首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, polytetrafluoroethylene (PTFE) films are modified using non-equilibrium plasma generated by homogeneous DBD in air at medium pressure, and the results are compared to those treated by using filamentary DBD in air at atmospheric pressure. The surface properties of PTFE films before and after the treatments are studied using contact angle and surface energy measurement, X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). It is found that the plasma treatments modify the PTFE surface in both morphology and composition. The PTFE films modified in both treatments show a remarkable decrease in water contact and a remarkable increase in surface energy. XPS analysis reveals that oxygen-containing polar groups are introduced onto the PTFE surface, and SEM analysis shows that the surfaces of the films are etched after both the treatments. It is found that homogeneous DBD is more effective in PTFE surface modification than filamentary DBD as it can make the contact angle decline to a lower level by introducing more oxygen-containing groups, and the possible reason for this effect is discussed.  相似文献   

2.
In this paper, the effects of air dielectric barrier discharge (DBD) plasma treatment time on surface properties of poly(p-phenylene benzobisoxazole) (PBO) fiber were investigated. The surface characteristics of PBO fiber before and after the plasma treatments were analyzed by dynamic contact angle (DCA) analysis, scanning electron microscopy (SEM), atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). DCA measurements indicated that the surface wettability of PBO fiber was improved significantly by increasing the fiber surface free energy via air DBD plasma treatments. The results were confirmed by the improvement of adhesion of a kind of thermoplastic resin to PBO fiber which was observed by SEM, showing that more resin was adhering evenly to the fiber surface. AFM measurement revealed that the surface topography of PBO fiber became more complicated and the surface roughness was greatly enhanced after the plasma treatments, and XPS analysis showed that some new polar groups (e.g. OCO) were introduced on plasma treated PBO fiber surface. The results of this study also showed that the surface properties of PBO fiber changed with the elongation of plasma treatment time.  相似文献   

3.
Surface analysis of plasma grafted carbon fiber   总被引:1,自引:0,他引:1  
The surface characteristics of carbon fibers were studied by X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and wetting measurements. The surface of carbon fiber was modified by means of plasma graft silsesquioxane. The oxygen/carbon and silicon/carbon ratio increased rapidly after treatments. Fitting the C 1s, O 1s, and Si 2p spectra demonstrated that new photopeaks were emerged, which were indicated C-Si, Si-O groups, respectively. The degree of surface roughness and the wettability of carbon fiber surface were both increased by plasma graft silsesquioxane. The results may shed some light on the design of the appropriate surface structure, which could react with resin, and the manufacture of the carbon fiber reinforced composites.  相似文献   

4.
Wettability of Armos fibers has been investigated after exposed to dielectric barrier discharge (DBD) plasma, which was performed at atmospheric pressure in air while varying the sample treatment time between 9 and 27 s. Contact angles and surface free energy of the original and plasma-treated fibers were measured with dynamic contact angle analysis (DCAA) to reveal the correlation between the fiber wettability and the surface treatment, including surface composition and topography modifications, which were evaluated by X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM), respectively. It was found by XPS analysis that the O/C atomic ratio on Armos fiber surface can be increased from 0.134 to 0.248 after the 18 s exposure to the plasma and many polar functional groups were proved to be incorporated into the surface, which aided good wetting. In addition, AFM observations revealed the changes of fiber surface microstructure, showing significant enhancement of the surface roughness after the treatment, which could also bring the fiber better wettability. What's more, the impacts of fiber surface treatment on its tensile properties were characterized by single fiber tensile strength (SFTS) testing. Results showed that Armos fibers exhibited only slight reductions in their tensile strengths with the great enhancement in fiber surface free energy.  相似文献   

5.
Dielectric barrier discharge (DBD) of Helium and Helium + air modify the surface of Angora rabbit fibers. DBD treatment carried out at different power densities, changes the morphology and chemical composition of the surface of Angora fiber. Scanning electron microscopy (SEM) results reveal that the DBD treatment eliminates fibrosity from the fiber surface. X-ray photoelectron spectroscopy and Fourier transform infrared spectrometer (FTIR) spectrum confirm the increase in oxygen bonding at the surface. These changes reduce shedding of the fibers and improve dye-uptake property. However, even after 10 min of plasma exposure the thermal insulation (heat keeping ratio) of Angora fibers nearly remain unchanged. It has been noticed that DBD treatment (10 min) reduces whiteness of the fiber.  相似文献   

6.
Aramid fiber samples are treated by air dielectric barrier discharge (DBD) plasma at atmospheric pressure; the plasma treatment time is investigated as the major parameter. The effects of this treatment on the fiber surface physical and chemical properties are studied by using surface characterization techniques. Scanning electron microscopy (SEM) is performed to determine the surface morphology changes, X-ray photoelectron spectroscopy (XPS) is analyzed to reveal the surface chemical composition variations and dynamic contact angle analysis (DCAA) is used to examine the changes of the fiber surface wettability. In addition, the wetting behavior of a kind of thermoplastic resin, poly(phthalazinone ether sulfone ketone) (PPESK), on aramid fiber surface is also observed by SEM photos. The study shows that there seems to be an optimum treatment condition for surface modification of aramid fiber by the air DBD plasma. In this paper, after the 12 s, 27.6 W/cm3 plasma treatment the aramid fiber surface roughness is significantly improved, some new oxygen-containing groups such as C-O, CO and OC-O are generated on the fiber surface and the fiber surface wettability is greatly enhanced, which results in the better wetting behavior of PPESK resin on the plasma-treated aramid fiber.  相似文献   

7.
The influence of oxygen plasma treatment on surface properties of poly(p-phenylene benzobisoxazole) (PBO) fibers and aging effect of the oxygen plasma modified PBO fiber surfaces were investigated by X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and dynamic contact angle analysis (DCAA), respectively. The results indicated that the oxygen plasma treatment introduced some polar groups to PBO fiber surfaces, enhanced surface roughness and changed surface morphologies of PBO fibers by plasma etching and oxidative reactions. Surface wettability of PBO fibers may be significantly improved by increasing surface free energy of the fibers via oxygen plasma treatment. Aging effect of the oxygen plasma treated PBO fibers showed that the fiber surface wettability degraded in the first several days after the plasma treatment, and it was found to be changeless as the aging time continued as long as 30 days.  相似文献   

8.
Bing Xu  Yun Lu 《Applied Surface Science》2006,253(5):2695-2701
In this work, sized polyacrylonitrile (PAN)-based carbon fibers were chemically modified with nitric acid and maleic anhydride (MA) in order to improve the interaction between carbon fiber surface and polyimide matrix. Bismaleimide (BMI) was selected as a model compound of polyimide to react with modified carbon fiber. The surface characteristic changing after modification and surface reaction was investigated by element analysis (EA), scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and surface enhanced Raman scattering (SERS). The results indicated that the modification of carbon fiber surface with MA might follow the Diels Alder reaction mechanism. In the surface reaction between modified fibers and BMI, among the various surface functional groups, the hydroxyl group provided from phenolic hydroxyl group and bridged structure on carbon fiber may be the most effective group reacted with imide structure. The results may shed some light on the design of the appropriate surface structure, which could react with polyimide, and the manufacture of the carbon fiber-reinforced polyimide matrix composites.  相似文献   

9.
In order to study the influence of plasma on electrode, atmospheric pressure dielectric barrier discharge (DBD) air plasma is employed here to treat copper electrode surface. Plasma is generated between the parallel plate electrodes by means of high voltage produced by a high-frequency power supply with transformer. Electrode surface alterations induced by air plasma are investigated by using field emission scanning electron microscope (FE-SEM), X-ray energy dispersion spectroscopy (EDS) and contact angle measurement. The results show that DBD air plasma removes the organic contaminant on surface and causes electrode surface roughness, oxidization and nitridation. In addition, surface wettability is also improved, as concluded from contact angle measurements.  相似文献   

10.
Dihydroxy poly(p-phenylene benzobisoxazole) (DHPBO), a modified poly(p-phenylene benzoxazole) (PBO) polymer containing double hydroxyl groups in polymer chains, was synthesized by copolymerization of 4,6-diamino resorcinol dihydrochloride (DAR), purified terephthalic acid (TA) and 2,5-dihydroxyterephthalic acid (DHTA). DHPBO fibers were prepared by dry-jet wet-spinning method. The effects of hydroxyl polar groups on the surface elemental compositions of PBO fiber were investigated by X-ray photoelectron spectroscopy (XPS). The results show that the ratio of oxygen/carbon on the surface of DHPBO fibers is higher than that on the surface of PBO fibers, which indicates the content of polar groups on the surface of DHPBO fiber increase compared with PBO fiber.  相似文献   

11.
Surface properties of a Melinex 800 PET polymer material modified by an atmospheric-pressure air dielectric barrier discharge (DBD) have been studied using X-ray photoelectron microscopy (XPS) and contact angle measurement. The results show that the material surface treated by the DBD was modified significantly in chemical composition, with the highly oxidised carbon species increasing as the surface processing proceeds. The surface hydrophilicity was dramatically improved after the treatment, with the surface contact angle reduced from 81.8° for the as-supplied sample to lower than 50° after treatment. Post-treatment recovery effect is found after the treated samples were stored in air for a long period of time, with the ultimate contact angles, as measured, being stabilised in the range 58-69° after the storage, varying with the DBD-treatment power density. A great amount of the C-O type bonding formed during the DBD treatment was found to be converted into the CO type during post-treatment storage. A possible mechanism for this bond conversion has been suggested.  相似文献   

12.
A dielectric barrier discharge (DBD) technique has been employed to produce uniform atmospheric plasmas of He and N2 gas mixtures in open air in order to functionalize the surface of filtered-arc deposited hydrogen-free diamond-like carbon (DLC) films. XPS measurements were carried out on both untreated and He/N2 DBD plasma-treated DLC surfaces. Chemical states of the C 1s and N 1s peaks were collected and used to characterize the surface bonds. Contact angle measurements were also used to record the short- and long-term variations in wettability of treated and untreated DLC. In addition, cell viability tests were performed to determine the influence of various He/N2 atmospheric plasma treatments on the attachment of osteoblast MC3T3 cells. Current evidence shows the feasibility of atmospheric plasmas in producing long-lasting variations in the surface bonding and surface energy of hydrogen-free DLC and consequently the potential for this technique in the functionalization of DLC-coated devices.  相似文献   

13.
《Composite Interfaces》2013,20(2-3):277-285
The aging effects of atmospheric plasma treatments on UHMPE fibers are studied. UHMPE fibers are treated for 0.5 and 1 min with He/O2/air gas and for 2 and 4 min with He/air gas by atmospheric pressure plasma on a capacitively coupled device at a frequency of 5 kHz. The samples are tested for fiber/epoxy interfacial shear strength at time intervals of 0, 3, 15 and 30 days after initial plasma treatment. Scanning electron microscopy shows micro-cracks on each set of treated fibers, which is not affected by aging over the 30 day study. Interfacial shear strengths (IFSS) for plasma-treated fibers are 2–3 times as high as that of the control. The IFSS for the plasma treated fibers remains constant up to 15 days and then decreases afterwards. XPS Analysis shows a slight increase in atomic concentration of oxygen and nitrogen for each plasma-treated sample. For the He/O2/air plasma-treated samples, XPS analysis shows an observable increase in C–OH bonds, C=O bonds and COOH bonds, while for the He/air plasma-treated samples, there is a slight increase in C–OH and O=C–O bonds. After 30 days, a decrease in oxygen content for all plasma-treated samples is manifested.  相似文献   

14.
《Composite Interfaces》2013,20(2-3):249-267
The effect of atmospheric-pressure plasma treatment on high strength PAN-based carbon fibers had been studied in terms of fiber surface energetics and mode I and II interlaminar fracture toughness of unidirectional carbon fibers/epoxy matrix composites. The surface characterization of plasma treated carbon fibers was investigated by X-ray photoelectron spectroscopy (XPS) and contact angles. As a result, the plasma treatment changed the surface properties of the carbon fibers, mainly through formation of oxygen functional groups like hydroxyl, carbonyl, and carboxyl groups. According to contact angle measurements, it was observed that plasma treatment led to an increase in surface free energy of the fibers, mainly due to the increase of its specific component. Fracture toughness test results employing double-cantilever beam (DCB) and end notched flexure (ENF) specimens also showed that the increase in specific components or hydrogen bonding between the –OH groups on carbon fibers and the =O ring in epoxy matrix resins played an important role in improving the degree of adhesion at interfaces, resulting in an increase in the interfacial fracture toughness of the composites studied.  相似文献   

15.
The effect of argon/oxygen atmospheric dielectric barrier discharge (DBD) treatment on desizing and scouring of polyvinyl alcohol (PVA) on cotton fabric was studied with respect to the treatment duration of 1, 2, 4 and 6 min. X-ray photoelectron spectroscopy (XPS) analysis indicated that oxygen concentration increased for the plasma treated PVA film. Solubility measurement revealed that plasma treatment increased PVA solubility in hot washing but less effective in cold washing. Scanning electron microscopy (SEM) showed that the fiber surfaces were as clean as unsized fibers after 6 min treatment followed by hot washing. Wickability analysis indicated that the capillary heights of plasma treated fabrics increased significantly as the plasma treatment duration increased. The results of the yarn tensile strength test showed that the plasma treatment did not have a negative effect on fabric tensile strength.  相似文献   

16.
In this study, a non-thermal plasma torch in steamer mode was characterized to apply for surface modification in ambient air. The plasma source is a central rod-ring configuration based on DBD operation. Mixture of Ar/air gases was passed through the hollow Copper rod. A home-built high voltage generator at 18.8 kHz was employed to ignite the plasma. Electrical features of plasma torch were studied and different regions of plasma were examined using optical emission spectroscopy to explore the reactive species that result in efficient treatment. The surfaces of polyvinyl chloride (PVC) and silicone rubber (SIR) films were treated by the cold plasma torch. Contact angle measurement shows the improvement of surface hydrophilicity and wettability. Analysis revealed that the surface energy of the films increases indicating their activation after plasma treatment. This process is attributed to increasing the polar component of the surface energy.  相似文献   

17.
The hydrophobicity and tensile strength of muga silk fiber are investigated using radiofrequency (RF) Ar plasma treatment at various RF powers (10-30 W) and treatment times (5-20 min). The Ar plasma is characterized using self-compensated Langmuir and emissive probe. The ion energy is observed to play an important role in determining the tensile strength and hydrophobicity of the plasma treated fibers. The chemical compositions of the fibers are observed to be affected by the increase in RF power rather than treatment time. XPS study reveals that the ions that are impinging on the substrates are mainly responsible for the cleavage of peptide bond and side chain of amino acid groups at the surface of the fibers. The observed properties (tensile strength and hydrophobicity) of the treated fibers are found to be dependent on their variation in atomic concentration and functional composition at the surfaces. All the treated muga fibers exhibit almost similar thermal behavior as compared to the virgin one. At RF power of 10 W and treatment time range of 5-20 min, the treated fibers exhibit properties similar to that of the virgin one. Higher RF power (30 W) and the increase in treatment time deteriorate the properties of the fibers due to incorporation of more surface roughness caused by sufficiently high energetic ion bombardment. The properties of the plasma treated fibers are attempted to correlate with the XPS analysis and their surface morphologies.  相似文献   

18.
PAN基活性炭纤维的表面及其孔隙结构解析   总被引:7,自引:0,他引:7  
通过氮吸附等温线、X射线光电子能谱以及扫描电子显微镜(SEM)对聚丙烯腈(PAN-Polyacrylonitrile)-基活性炭纤维(ACF-Activated Carbon Fiber)的表面和孔隙结构进行了分析,结果表明吸附测量可以提供有关碳质吸附剂的孔结构复杂性;通过XPS对PAN基ACF的表面官能团的种类及含量进行了表征,由SEM对PAN基ACF的表面以及断面的孔隙结构进行直拉观察,提供了  相似文献   

19.
氦等离子体处理纳米二氧化硅溶胶涂覆T300碳纤维能构造出特定空间结构形态的纳米涂覆层.扫描电子显微镜照片显示,经氦等离子体处理后纳米二氧化硅溶胶涂覆T300碳纤维的纳米涂覆层在纤维表面分布均匀,起到填补纤维表面微观缺陷的功能.X射线光电子能谱及傅里叶变换红外光谱显示,纤维表面被引入了活性官能团,纳米二氧化硅涂覆层与碳纤维间有表面激活反应.形成纳米界面结构的T300碳纤维表面与纳米二氧化硅涂覆层间的相互作用符合艾琳方程,利用热激活体积可以对其相互作用进行定量分析.拉伸试验表明,屈服塑性变形导致纳米界面结构热激活,纳米微粒阻碍碳纤维表面大分子链形貌变化的热激活体积是纳米界面结构性能的重要表征. 关键词: 激活体积 溶胶涂覆 氦等离子体 纳米界面结构  相似文献   

20.
The effect of oxygen plasma treatment on the non-equilibrium dynamic adsorption of the carbon fabric reinforcements in RTM process was studied. 5-Dimethylamino-1-naphthalene-sulfonylchloride (DNS-Cl) was attached to the curing agent to study the change of curing agent content in the epoxy resin matrix. Steady state fluorescence spectroscopy (FS) analysis was used to study this changes in the epoxy resin at the inlet and outlet of the RTM mould, and XPS was used to study the chemical changes on the carbon fiber surfaces introduced by plasma treatment. The interlaminar shear strength (ILSS) and flexural strength were also measured to study the effects of this non-equilibrium dynamic adsorption progress on the mechanical properties of the end products. FS analysis shows that the curing agent adsorbed onto the fiber surface preferentially for untreated carbon fiber, the curing agent content in the resin matrix maintain unchanged after plasma treatment for 3 min and 5 min, but after oxygen plasma treatment for 7 min, the epoxy resin adsorbed onto the fiber surface preferentially. XPS analysis indicated that the oxygen plasma treatment successfully increased some polar functional groups concentration on the carbon fiber surfaces, this changes on the carbon fiber surfaces can change the adsorption ability of carbon fiber to the resin and curing agent. The mechanical properties of the composites were correlated to this results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号