首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Lipase immobilization offers unique advantages in terms of better process control, enhanced stability, predictable decay rates and improved economics. This work evaluated the immobilization of a highly active Yarrowia lipolytica lipase (YLL) by physical adsorption and covalent attachment. The enzyme was adsorbed on octyl–agarose and octadecyl–sepabeads supports by hydrophobic adsorption at low ionic strength and on MANAE–agarose support by ionic adsorption. CNBr–agarose was used as support for the covalent attachment immobilization. Immobilization yields of 71, 90 and 97% were obtained when Y. lipolytica lipase was immobilized into octyl–agarose, octadecyl–sepabeads and MANAE–agarose, respectively. However, the activity retention was lower (34% for octyl–agarose, 50% for octadecyl–sepabeads and 61% for MANAE–agarose), indicating that the immobilized lipase lost activity during immobilization procedures. Furthermore, immobilization by covalent attachment led to complete enzyme inactivation. Thermal deactivation was studied at a temperature range from 25 to 45°C and pH varying from 5.0 to 9.0 and revealed that the hydrophobic adsorption on octadecyl–sepabeads produced an appreciable stabilization of the biocatalyst. The octadecyl–sepabeads biocatalyst was almost tenfold more stable than free lipase, and its thermal deactivation profile was also modified. On the other hand, the Y. lipolytica lipase immobilized on octyl–agarose and MANAE–agarose supports presented low stability, even less than the free enzyme.  相似文献   

2.
Reported here is a protocol to fabricate a biocatalyst with high enzyme loading and activity retention, from the conjugation of electrospun nanofibrous membrane having biomimetic phospholipid moiety and lipase. To improve the catalytic efficiency and activity of the immobilized enzyme, poly(acrylonitrile-co-2-methacryloyloxyethyl phosphorylcholine)s(PANCMPCs) were, respectively, electrospun into nanofibrous membranes with a mean diameter of 90 nm, as a support for enzyme immobilization. Lipase from Candida rugosa was immobilized on these nanofibrous membranes by adsorption. Properties of immobilized lipase on PANCMPC nanofibrous membranes were compared with those of the lipase immobilized on the polyacrylonitrile(PAN) nanofibrous and sheet membranes, respectively. Effective enzyme loading on the nanofibrous membranes was achieved up to 22.0 mg/g, which was over 10 times that on the sheet membrane. The activity retention of immobilized lipase increased from 56.4% to 76.8% with an increase in phospholipid moiety from 0 to 9.6%(molar fraction) in the nanofibrous membrane. Kinetic parameter Km was also determined for free and immobilized lipase. The Km value of the immobilized lipase on the nanofibrous membrane was obviously lower than that on the sheet membrane. The optimum pH was 7.7 for free lipase, but shifted to 8.3-8.5 for immobilized lipases. The optimum temperature was determined to be 35 ℃ for the free enzyme, but 42-44℃ for the immobilized ones, respectively. In addition, the thermal stability, reusability, and storage stability of the immobilized lipase were obviously improved compared to the free one.  相似文献   

3.
Efforts have recently been made to improve the biocompatibility of support surface for enzyme immobilization, which could create a specific microenvironment for the enzymes and thus benefit the enzyme activity. In this work, one natural macromolecule, chitosan, was tethered on the surface of poly(acrylonitrile-co-maleic acid) (PANCMA) membrane to prepare a dual-layer biomimetic support for enzyme immobilization. Lipase from Candida rugosa was immobilized on this dual-layer biomimetic support by adsorption. The properties of the immobilized enzyme were assayed and compared with those of the free one. It was found that the adsorption capacity of lipase on the chitosan-tethered PANCMA membrane increases with the decrease of ionic strength and there is an optimum pH value for the adsorption. The activity retention of the immobilized lipase on the chitosan-tethered membrane by adsorption (54.1%) is higher than that by chemical bonding (44.5%). In comparison with the immobilized lipase by chemical bonding, there is a decrease of the K(m) value and an increase of the V(max) value for the immobilized lipase by adsorption. Additionally, the experimental results of thermal stabilities indicate that the residual activity of the immobilized lipase at 50 degrees C is 38% by adsorption and 65% by chemical bonding.  相似文献   

4.
Enhancing enzymatic properties by the immobilization method   总被引:4,自引:0,他引:4  
Effects of some immobilized carriers on enzymatic properties have been studied. The following results were obtained: (1) When cholinesterase was immobilized on the hydrophobic carrier with either α-naphthylamine, benzylamine, orp-methylbenzylamine groups, the affinities of immobilized cholinesterase for toxic organophosphors, GB (Isopnopy 1-methylphophonofluoridate) and Vx [o-ethyl-S-(2-diisopnoylomino-thyl) methyl phosphonothiolate], were enhanced 60–90 times and 700–1200 times, respectively, whereas the thermal stability of the immobilized cholinesterase increased to 110%. Approximately 82–88% activity of the immobilized cholinesterase remained after continuously operating for 8 h; and (2) Lipase was immobilized on the carrier that was made up of 6% polyethylenimine, 1% alginate gel, and 1% glutaraldehyde. The initial reaction rate of the esterification of lauric acid with lauric alcohol catalyzed by this kind of immobilized lipase was increased 21 times, as compared to lipase powder. About 72% esterification activity of lipase remained after continuous operating for 10 d.  相似文献   

5.
Esterification of glycerol with conjugated linoleic acid (CLA) was carried out in hexane. Lipase from Rhizomucor miehei provided a high degree of esterification (80%) in 8 h at 50°C when used at 15% (w/w) in a system containing a 1∶2 molar ratio of glycerol to free fatty acids. Esterification levels >80% were obtained in 8 h at 40°C with 15% (w/w) lipase from Candida antarctica at the same molar ratio of reactants. The extent of esterification of CLA was >90% after 4h of reaction at 50°C with a 5% (w/w) loading of either R. miehei or C. antarctica lipase, together with a 1∶1 molar ratio of substrates. Both enzymes incorporated the original CLA as acylglycerol residues in primarily 1,3-diacylglycerol and 1-monoacylglycerol. The CLA-rich acylglycerols can be employed as emulsifiers or as substitutes for natural fats and oils.  相似文献   

6.
The synthesis of butyl oleate was studied in this paper with immobilized lipase. Five types of membrane were used as support to immobilize Rhizopus arrhizus lipase by following a procedure combining filtration and protein cross-linking. Results showed that hydrophobic polytetrafluoroethene membrane with nonwoven fabric (HO-PTFE-NF) was the favorite choice in terms of higher protein loading, activity, and specific activity of immobilized lipase. The factors including solvent polarity, lipase dosage, concentration, and molar ratio of substrate and temperature were found to have significant influence on conversion. Results showed that hexane (logP = 3.53) was a favorable solvent for the biosynthesis of butyl oleate in our studies. The optimal conditions were experimentally determined of 50 U immobilized lipase, molar ratio of oleic acid to butanol of 1.0, substrate concentration of 0.12 mol/L, temperature of 37 °C, and reaction time of 2 h. The conversion was beyond 91% and decreased slightly after 18 cycles. Lipase immobilization can improve the conversion and the repeated use of immobilized lipase relative to free lipase.  相似文献   

7.
In the present study, the copolymeric hydrogels based on 2-hydroxyethyl methacrylate (HEMA) and itaconic acid (IA) were synthesized by gamma radiation induced radical polymerization, in order to examine the potential use of these hydrogels in immobilization of Citrullus vulgaris urease. Gelation and Swelling properties of PHEMA and copolymeric P (HEMA/IA) hydrogels with different IA contents (96.5/3.5, 94.4/5.6 and 92.5/7.5 mol) were studied in a wide pH range. Initial studies of so-prepared hydrogels show interesting pH sensitivity in swelling and immobilization. C. vulgaris urease was immobilized on HEMA/IA (92.5/7.5) at 6 kGy with 41.3% retention of activity. The properties of free and immobilized urease were compared. Immobilized urease maintained a higher relative activity than free urease at both lower and higher pH levels, indicating that the immobilized urease was less sensitive to pH changes than the free urease. The Km value of the immobilized urease was approximately 2 times higher than that of the free urease. Temperature stability was improved for immobilized enzyme. The free form exhibited a loss about 80% of activity upon incubation for 15 min at 80°C. The influence of various heavy metal ions at the concentration of l mM was improved after enzyme immobilization. The immobilization of C. vulgaris urease on HEMA/IA (92.5/7.5) at 6 kGy showed a residual activity of 47 % after 4 reuses.  相似文献   

8.
Nanofibrous membrane with a fiber diameter of 80-150 nm was fabricated from mixed chitosan/poly(vinyl alcohol) (PVA) solution by an electrospinning process. Field emission scanning electron microscope and transmission electron microscope were used to characterize the morphology of the nanofibrous membrane. It was found that chitosan nanofibrous membrane with stabilized morphology could be prepared through removing most of PVA from the nascent one with 0.5 M NaOH aqueous solution. This treatment also resulted in an obvious decrease in fiber diameter. The stabilized chitosan nanofibrous membrane was explored as support for enzyme immobilization due to the characteristics of excellent biocompatibility, high surface/volume ratio, and large porosity. Lipase from Candida rugosa was immobilized on the nanofibrous membrane using glutaraldehyde (GA) as coupling reagent. The properties of the immobilized lipase were assayed and compared with the free one. Results showed that, the observed lipase loading on this nanofibrous membrane was up to 63.6 mg/g and the activity retention of the immobilized lipase was 49.8% under the optimum condition. The pH and thermal stabilities of lipase were improved after it was immobilized on the chitosan nanofibrous membrane. In addition, the experimental results of reusability and storage stability indicated that the residual activities of the immobilized lipase were 46% after 10 cycles and 56.2% after 30 days, which were obviously higher than that of the free one.  相似文献   

9.
以硅藻土吸附的脂肪酶为催化剂,对外消旋酮基布洛芬[2-(3-苯甲酰苯基)丙酸]进行对映选择性酯化反应;考察了不同的脂肪酶制剂,固定化时所加缓冲液的体积与pH值,酰基受体(醇)的种类以及混合溶剂系统的组成等因素对酶活性的影响.结果表明,在所考察的7种脂肪酶中,以LipaseOF的酪化活性最高;用硅藻土吸附固定化酶时,缓冲溶液的最适pH为7.0左右,每克酶粉加1.0mL缓冲溶液为最佳;固定化酶催化酯化的活性比游离的脂肪酶高.在酮基布洛芬与不同酰基受体(醇)的酶促酯化反应中,以丙醇的反应速度为最快.在由一种主溶剂与一种助溶剂组成的混合溶剂系统中,酶促酯化的速度要比在单一的主溶剂或助溶剂系统中快.当以1gP值较大的环己烷或异辛烷等为主溶剂,甲苯为助溶剂时,脂肪酶催化酮基布洛芬酯化反应的活性最高.  相似文献   

10.
IntroductionLipases are biotechnologically important enzymes,which are able to catalyze the hydrolysis/synthesis of awide range of soluble or insoluble carboxylic acid estersand amides.In this way,the enzymes have been wide-ly used biotechnologically in dairy industry,oil pro-cessing,the production of surfactants,and the prepara-tion of enantiomerically pure pharmaceuticals[1,2].However,like mostenzymes for industrial applica-tions,lipases are unstable and easy to lose their cata-lytic activit…  相似文献   

11.
A one-step mild method for entrapping animal cells and enzymes in macroporous composite poly (N-vinyl caprolactam)-calcium alginate (PVCL-CaAlg) hydrogels is described. Some properties of immobilized enzymes, such as thermal and storage stabilities and stability in water/organic media were investigated. Composite PVCL-CaAlg gels were successfully applied to immobilize a number of proteases, namely, trypsin, α-chymotrypsin, carboxypeptidase B, and thrombin. Thermal stability of the immobilized preparations obtained by entrapment in hydrogel beads allowed us to use them at 65–80†C, while the native enzymes were completely inactivated at 50–55°C. Various applications of enzymes and cells immobilized in beads weredemonstrated. Immobilized trypsin and carboxypeptidase B were applied to prepare human insulin from recombinant proinsulin. The hydrogel beads with entrapped α-chymotrypsin were used in enantioselective hydrolysis of Shiff's base of D,L-phenylalanine ethyl ester (SBPH) in acetonitrile/water medium. Thrombin immobilized in PVCL-based hydrogel films was shown to be a promising compound for wound treatment. To prepare pure preparations of monoclonal antibodies (MAb) several hybridoma cell lines, including hybridoma cell lines producing MAb to interleukin-2, were successfully cultivated in the hydrogel beads.  相似文献   

12.
Efforts have recently been made toward the study of interactions of phospholipid with various enzymes. It seems that phospholipids may be directly involved in regulating the enzyme activity. In this work, three phospholipid analogous polymers (PAPs), containing hydrophobic octyloxy, dodecyloxy, and octadecyloxy groups (abbreviated as 8-PAP, 12-PAP, and 18-PAP, respectively), were tethered on polypropylene hollow fiber microfiltration membrane (PPHFMM) to create a biocompatible interface for lipase immobilization. Lipase from Candida rugosa was immobilized on these PPHFMMs by adsorption. The adsorption capacity, activity, and thermal stability of enzyme on the PAP-modified PPHFMMs were compared with those of enzyme on the nascent ones. It was found that, as for the PAP-modified PPHFMMs, the adsorption capacities of lipase are lower than that of the nascent ones, while the activity retention of immobilized lipase increases from 57.5% to 74.1%, 77.5%, and 83.2% respectively for the 8-PAP-, 12-PAP-, and 18-PAP-modified PPHFMMs. In addition, the experimental results of thermal stability show that the residual activity of the immobilized lipase at 50 degrees C for 2 h is 62% for the 8-PAP-modified PPHFMM, 59% for the 12-PAP-modified PPHFMM, and 66% for the 18-PAP-modified PPHFMM, which are also higher than that of the nascent ones.  相似文献   

13.
A novel method for immobilization of Thermomyces lanuginosus lipase onto polyglutaraldehyde-activated poly(styrene-divinylbenzene) (STY-DVB), which is a hydrophobic microporous support has been successfully developed. The copolymer was prepared by the polymerization of the continuous phase of a high internal phase emulsion (polyHIPE). The concentrated emulsion consists of a mixture of styrene and divinylbenzene containing a suitable surfactant and an initiator as the continuous phase and water as the dispersed phase. Lipase from T. lanuginosus was immobilized covalently with 85% yield on the internal surface of the hydrophobic microporous poly(styrene-divinylbenzene) copolymer and used as a biocatalyst for the transesterification reaction. The immobilized enzyme has been fully active 30 days in storage and retained the activity during the 15 repeated batch reactions. The properties of free and immobilized lipase were studied. The effects of protein concentration, pH, temperature, and time on the immobilization, activity, and stability of the immobilized lipase were also studied. The newly synthesized microporous poly(styrene-divinylbenzene) copolymer constitutes excellent support for lipase. It given rise to high immobilization yield, retains enzymatic activity for 30 days, stable in structure and allows for the immobilization of large amount of protein (11.4mg/g support). Since immobilization is simple yet effective, the newly immobilized lipase could be used in several application including oil hydrolysis, production of modified oils, biodiesel synthesis, and removal of fatty acids from oils.  相似文献   

14.
Various strategies are being pursued to confer the highly specific molecular recognition properties of bioactive molecules to the transducer action of inherently conductive polymers. We have successfully integrated inherently conductive polypyrrole within electrode-supported, UV cross-linked hydroxyethyl methacrylate (HEMA)-based hydrogels. These electroactive composites were used as matrixes for the physical immobilization of several oxidase enzymes to fabricate clinically important biosensors. Measurements were made of the amperometric responses via H2O2 oxidation for each biosensor. Apparent Michaelis constants, Km(app), for glucose oxidase immobilized in p(HEMA) membranes and in p(HEMA)/p(Pyrrole) composite membranes were 13.8 and 43.7 mM respectively compared to 33 mM in solution. The inclusion of polypyrrole in the hydrogel network increased the thermal stability of the immobilized enzyme at 60°C by 30% and 40% compared to p(HEMA) membranes and solution phase respectively. The composite also yielded larger Imax values (19 μA/cm−2) for glucose biosensors compared to similar glucose biosensors fabricated without the conducting polymer (15 μA). Km(app) values for cholesterol oxidase immobilized in the same composite films were ca. three orders of magnitude higher than the Km for the soluble enzyme. The polypyrrole component is shown to reduce diffusive transport but to confer thermal stability to these biosensors.  相似文献   

15.
In this study, amine groups containing thiol-ene photocurable coating material for lipase immobilization were prepared. Lipase (EC 3.1.1.3) from Candida rugosa was immobilized onto the photocured coatings by physical adsorption and glutaraldehyde-activated covalent bonding methods, respectively. The catalytic efficiency of the immobilized and free enzymes was determined for the hydrolysis of p-nitrophenyl palmitate and also for the synthesis of p-nitrophenyl linoleate. The storage stability and the reusability of the immobilized enzyme and the effect of temperature and pH on the catalytic activities were also investigated. The optimum pH for free lipase and physically immobilized lipase was determined as 7.0, while it was found as 7.5 for the covalent immobilization. After immobilization, the optimum temperature increased from 37 °C (free lipase) to 50–55 °C. In the end of 15 repeated cycles, covalently bounded enzyme retained 60 and 70 % of its initial activities for hydrolytic and synthetic assays, respectively. While the physically bounded enzyme retained only 56 % of its hydrolytic activity and 67 % of its synthetic activity in the same cycle period. In the case of hydrolysis V max values slightly decreased after immobilization. For synthetic assay, the V max value for the covalently immobilized lipase was found as same as free lipase while it decreased dramatically for the physically immobilized lipase. Physically immobilized enzyme was found to be superior over covalent bonding in terms of enzyme loading capacity and optimum temperature and exhibited comparable re-use values and storage stability. Thus, a fast, easy, and less laborious method for lipase immobilization was developed.  相似文献   

16.
Alicyclic hydroxy methacrylate monomer, o‐hydroxycyclohexyl methacrylate (HCMA), was synthesized and characterized by Fourier transformed infrared spectroscopy (FT‐IR) and proton nuclear magnetic resonance spectroscopy (1H‐NMR). Photopolymerization kinetics of HCMA was investigated via real‐time infrared spectroscopy (RT‐IR). Polymeric network hydrogels based on hydroxyethyl methacrylate (HEMA) and HCMA were prepared by using the photopolymerization technique. Mechanical strength, swelling characteristic, and controlled release behavior of hydrogels with various feed compositions were studied. Poly(HEMA‐co‐HCMA) hydrogel had higher storage modulus than that of poly(HEMA) hydrogel as investigated by dynamic mechanical analysis (DMA). Acid orange 8 was used as a model drug for the investigation of drug release behavior of copolymeric hydrogels. Results indicated that increase in HCMA ratio in hydrogel composition could reduce the swelling rate and prolong the release time. Scanning electron microscopy (SEM) was also utilized to study the surface morphology of hydrogels, and the results indicated that HCMA content influenced pore diameter on the hydrogel surface. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
Lipase was immobilized in silk fibers through glutaraldehyde cross-linking to a maximum loading of 59 U/g silk-fiber and the immobilized lipase was utilized for the hydrolysis of sunflower oil (Helianthus annuus). The hydrolytic activity of the lipase, which was poor in biphasic oil in water system, was increased significantly when the sunflower oil was emulsified in aqueous medium. The hydrolytic activities of the immobilized lipase were 48.73 ± 1.26 U, 36.11 ± 0.96 U, and nil when the substrate sunflower oil was used as emulsion created by a rhamnolipid biosurfactant, Triton X100, and ultrasonication, respectively. Although the efficiency of the immobilized lipase was less than 12% than the corresponding free lipase, the immobilized lipase could be reused for the biosurfactant-mediated hydrolysis of sunflower oil up to third cycle of the reaction. The yield of the fatty acids in the second, third, and fourth cycles were 49.45%, 22.91%, and 5.09%, respectively, of the yield obtained in the first cycle.  相似文献   

18.
Lipase fromCandida rugosa was immobilized by attaching various hydrophobic groups to the enzyme molecule and adsorbing these hydrophobic lipase derivatives on several organic polymer beads. The immobilized enzymes were more thermostable in organic solvents compared to the native and modified Upases. Thermostability was highest with ΧAD2 beads, followed by ΧAD7 and RCOOH. Initially modifying the enzyme with hydrophobic modifiers did not have any effect on the enzyme thermostability. The best conditions for storing these enzyme preparations were at very low temperature in the lyophilized form and in a solution containing the reaction substrate. Interestingly, PEG-lipase immobilized on ΧAD7 beads showed increased operational stability when used in a stirred-tank reactor. The operational stability was further increased by a mild glutaraldehyde treatment of the enzyme preparation.  相似文献   

19.
The aim of this study was to synthesize and characterize a novel biocompatible polymeric membrane system and demonstrate its potential use in various biomedical applications. Synthetic hydrogels based on poly(hydroxyethyl methacrylate), poly(HEMA), have been widely studied and used in biomedical fields. A novel copolymer hydrogel was prepared in the membrane form using 2-hydroxyethyl methacrylate monomer (HEMA) and a macromonomer p-vinylbenzyl-poly(ethylene oxide) (V-PEO) via photoinitiated polymerization. A series of poly(HEMA/V-PEO) copolymer membranes with different compositions was prepared. The membranes were characterized using infrared, thermal and SEM analysis. The thermal stabilities of the copolymer membranes were found to be lowered by an increase in the ratio of macromonomer (V-PEO) in the membrane structure. Because of the incorporation of PEO segments, the copolymers exhibited significantly higher hydrophilic surface properties than pure poly(HEMA), as demonstrated by contact angle measurements. Equilibrium swelling studies were conducted to investigate the swelling behavior of the membranes. The equilibrium water uptake was reached in about 4 h. Moreover, the blood protein adsorption and platelet adhesion were significantly reduced on the surface of the PEO containing copolymer membranes compared to control pure poly(HEMA). Drug release experiments were performed in a continuous release system using model drug (vancomycin) loaded copoly(HEMA/V-PEO) membranes. A specific poly(HEMA/V-PEO) membrane formulation possessing the highest PEO content (with a HEMA:V-PEO (mmol:mmol) feed ratio of 112:1 and loaded with 40 mg antibiotic/g polymer) released about 81% of the total loaded drug in 24 h at pH 7.4. This membrane composition provided the best results and can be considered as a potential candidate for a transdermal antibiotic carrier and various biomedical and biotechnological applications.  相似文献   

20.
亲水梳状环氧聚合物载体柔性固定化脂肪酶   总被引:4,自引:0,他引:4  
以氯乙酰化聚苯乙烯微球载体为大分子引发剂,以甲基丙烯酸缩水甘油酯和亲水性丙烯酰胺为共聚接枝单体,以氯化亚铜及2,2'-联吡啶为催化体系,采用原子转移自由基聚合法接枝合成了具有柔性链的亲水梳状环氧聚合物载体PS-acyl-P(AM-co-GMA),并将其用于耐有机溶剂YCJ01脂肪酶的共价柔性固定化.结果表明,固定化酶催...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号