首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In a previous study (Langmuir 28 (2012) 10164-10176.), we investigated the complexation of bovine serum albumin (BSA) with sugar beet pectin (SBP). A pH-composition phase diagram was established and structural transitions in relation to the phase diagram during complexation were identified. The present study examines the implications of these interactions on the emulsifying performance of BSA/SBP mixtures. Middle-chain triglycerides (MCTs) in water emulsions were prepared using conditions corresponding to different regions of the phase diagram. At high pHs and in the stable region of mixed individual soluble polymers where complexation is absent, there is no improved emulsifying performance, compared with the individual protein and polysaccharide. For these mixtures, the emulsion characteristics are controlled by the major component in the solutions, as determined by the competitive adsorption of the two components at the oil-water interface. At low pHs and low BSA/SBP ratios, and so mainly within the stable region of intramolecular soluble complexes, BSA/SBP mixtures greatly improve the stability of emulsions. Here, stabilisation is controlled by the cooperative adsorption of the two components at the oil-water interface. Through electrostatic complexation BSA promotes the adsorption of SBP on to interfaces to form a thick steric layer around emulsion droplets and thus providing better stability. At low pHs and high BSA/SBP ratios, that is, mainly within the unstable region of intermolecular insoluble complexes, emulsions prepared are extremely unstable due to bridging flocculation between emulsion droplets.  相似文献   

2.
Complexes composed of sodium hyaluronate (NaHA) and bovine serum albumin (BSA) were studied to elucidate the exact composition of the complex, the phase separation, the electrophoretic mobility and the size using dynamic light scattering (DLS) and electrophoretic light scattering (ELS), etc. The phase diagram of the mixed solutions was determined. The complexes were soluble in neutral or weakly acidic pH regions and showed phase separation in the more acidic pH region. From the concentration of Na+ released from NaHA when it binds to BSA, the ratios of BSA to NaHA of the complexes were determined. In the region of soluble complexes, one BSA molecule was determined to bind with 15 carboxylic groups of NaHA and in the region of insoluble complexes to bind with 6 carboxylic groups. At the phase separation point, 117 BSA molecules bound with one NaHA molecule and 17% of the carboxylic groups of NaHA did not contribute to the binding of BSA. The sizes of the complexes decreased from several microm to several hundred nm as the binding ratio of BSA increases. Decreases in the viscosities of the mixed solutions were consistent with the decreases of the sizes. From these results, a model of complex formation is proposed.  相似文献   

3.
Phase analysis, spectroscopic, and light scattering methods are applied to investigate the peculiarities of the interaction of oligochitosan (OCHI) with native and preheated bovine serum albumin (BSA) as well as the conformational and structural changes of BSA in BSA/OCHI complex. As shown, untreated BSA binds with OCHI mainly forming soluble electrostatic nanocomplexes, with the binding causing an increase in BSA helicity without a change in the local tertiary structure and thermal stability of BSA. In contrast, soft preheating at 56 °C enhances the complexation of BSA with OCHI and slightly destabilizes the secondary and local tertiary structures of BSA within the complex particles. Preheating at 64 °C (below the irreversible stage of BSA thermodenaturation) leads to further enhancement in the complexation and formation of insoluble complexes stabilized by both Coulomb forces and hydrophobic interactions. The finding can be promising for the preparation of biodegradable BSA/chitosan-based drug delivery systems.  相似文献   

4.
Intermacromolecular complexation between chitosan and sodium caseinate in aqueous solutions was studied as a function of pH (3–6.5), using absorbance measurements (at 600 nm), dynamic light scattering (DLS), and transmission electron microscopy (TEM). The chitosan–caseinate complexes formed were stable and soluble in the pH range 4.8–6.0. In this pH range, the biopolymers had opposite charges. At higher concentrations of chitosan (0.15 wt%), the soluble complexes associated to form larger particles. DLS data showed that, between pH 4.8 and 6.0, the particles formed by the complexation of chitosan and caseinate had sizes between 250 and 350 nm and these nanoparticles were visualized using negative staining TEM. Above pH 6.0, the nanoparticles associated to form larger particles, causing phase separation. Addition of NaCl increased the particle size. The pH dependence of the zeta potential of the mixture solutions was appreciably different from that of the pure protein and pure chitosan solutions.  相似文献   

5.
pH-Induced structural changes during complex coacervation between beta-lactoglobulin (BLG) and Acacia gum (AG) in aqueous solutions were determined by coupling slow in situ acidification of BLG/AG mixed dispersions and different experimental methods. The combined signal evolution of dynamic light scattering at 90 degrees scattering angle (I(90)), electrophoretic mobility, turbidimetry (tau), circular dichroism, and phase contrast microscopy allowed the distinction of critical structural transitions and the definition of their corresponding pH. The formation of soluble BLG/AG complexes was initiated at pH(sc) (4.90), since I(90) and tau significantly increased from the baseline. In parallel or just following complexation, a conformational change of BLG was detected at pH(pct) (4.8). An increase in positive charge density of BLG induced complex aggregation at pH(ca) (4.7). More efficient charge neutralization of aggregated complexes, especially through the lowering of the number of AG negative charges, promoted initiation of phase separation at pH(psi) (4.4). Mixed dispersions became unstable and phase separation occurred at pH(ps) (4.2). The phase separation of mixed dispersions was suggested by the maximum value of scattered light, by an important acceleration of the dispersion turbidity, by a strong increase of hydrodynamic radii, and by the first appearance of light fluctuations as observed by phase contrast microscopy. At the microscopic level, the first coacervates were observed at pH(coa) (4.0), near the pH of the maximum of turbidity. It was also noticed that, from the onset of interactions between biopolymers, the pH decrease led to (i) a gradual homogenization of particle size in the mixed dispersion as suggested by the decrease of dispersion polydispersity and (ii) conformational transitions of the protein (a loss of alpha-helix structure at pH(pct) and a gain in protein secondary structure near pH(coa), probably involving beta-sheet components).  相似文献   

6.
The phase states of mixed dilute solutions of PAA, PEG, and Cu2+ ions largely determines the mechanism governing the growth of metal nanoparticles during the subsequent reduction of copper ions. Mixtures with PAA: PEG > 1 base-mol/base-mol and PAA: Cu2+ ≥ 5 base-mol/mol are studied. It is shown that the simultaneous complexation of PAA with PEG and Cu2+ ions in these mixtures at pH values below the intrinsic pH of a solution is accompanied by phase separation related to insolubility of PAA-PEG interpolymer complexes. A decrease in the pH of the ternary mixture is caused by the release of a strong low-molecular-mass acid due to complexation with Cu2+ ions. The minimum pH value, above which the PAA-PEG-Cu2+ system becomes single-phase (a transparent solution), depends on the concentration ratio between PAA and PEG chains (the mean degree of polymerization). This value is either 6.8–7.0 (if all macromolecules are incorporated in the insoluble interpolymer complex with PEG) or 4.0 (if chains occur in excess). Methods of preparing single-phase systems in the pH range 4.0–7.0 via exchange reactions of the PAA-Cu2+ complex with PEG or the nonstoichiometric soluble interpolymer complex PAA-PEG are developed. Viscometry, electron microscopy, and dynamic light scattering are used to investigate the compositions and structures of soluble complexes, in which either each chain (if the chain is long) may be linked with both PEG and Cu2+ ions or PAA chains are redistributed between two complexes (at comparable lengths of PAA and PEG chains).  相似文献   

7.
The effect of pH on the complex formation between poly(acrylic acid) (PAA) and poly(ethylene oxide) (PEO) has been studied in aqueous solutions by turbidimetric and fluorescent methods. It was shown that the formation of insoluble interpolymer complexes is observed below a certain critical pH of complexation (pH(crit1)). The formation of hydrophilic interpolymer associates is possible above pH(crit1) and below a certain pH(crit2). The effects of polymer concentrations in solution and PEO molecular weight as well as inorganic salt addition on these critical pH values were studied. The polymeric films based on blends of PAA and PEO were prepared by casting from aqueous solutions with different pHs. These films were characterized by light transmittance measurements and differential scanning calorimetry. The existence of the pH value above which the polymers form an immiscible blend was demonstrated. The transitions between the interpolymer complex, miscible blend, and immiscible blend caused by pH changes are discussed. The recommendations for preparation of homogeneous miscible films based on compositions of poly(carboxylic acids) and various nonionic water-soluble polymers are presented.  相似文献   

8.
Interpolymer complexation of poly(acrylic acid) with poly(acrylamide) and hydrolysed poly(acrylamide) was studied by fluorescence spectroscopy and viscometry in dilute aqueous solutions. Changes in chain conformation and flexibility due to the interpolymer association are reflected in the intramolecular excimer fluorescence of pyrene groups covalently attached to the polymer chain. Both poly(acrylamide) and hydrolysed poly(acrylamide) form stable complexes with poly(acrylic acid) at low pH. The molecular weight of poly(acrylic acid) and solution properties such as pH and ionic strength were found to influence the stability and the structure of the complexes. In addition, the polymer solutions mixing time showed an effect on the mean stoichiometry of the complex. The intrinsic viscosity of the solutions of mixed polymers at low pH suggested a compact polymer structure for the complex.  相似文献   

9.
Dimerization of the keto tautomer of acetohydroxamic acid has been studied using FTIR matrix isolation spectroscopy and DFT(B3LYP)/6-31+G(d,p) calculations. Analysis of CH3CONHOH/Ar matrix spectra indicates formation of two dimers in which two intramolecular CO...HON bonds within two interacting acetohydroxamic acid molecules are retained. A chain dimer I is stabilized by the intermolecular CO...HN hydrogen bond, whereas the cyclic dimer II is stabilized by two intermolecular NH...O(H)N bonds. Twelve vibrations were identified for dimer I and six vibrations for dimer II; the observed frequency shifts show a good agreement with the calculated ones for the structures I and II. Both dimers have comparable binding energies (DeltaE(ZPE)(CP)I, II=-7.02, -6.34 kcal mol-1) being less stable than calculated structures III and IV (DeltaE(ZPE)(CP)III, IV=-9.50, -8.87 kcal mol-1) in which one or two intramolecular hydrogen bonds are disrupted. In the most stable 10-membered cyclic dimer III, two intermolecular CO...HON hydrogen bonds are formed at expense of intramolecular hydrogen bonds of the same type. The formation of the less stable (AHA)2 dimers in the studied matrixes indicates that the formation of (AHA)2 is kinetically and not thermodynamically controlled.  相似文献   

10.
A new class of water-soluble polypyrroles (PPy) has been developed. This was accomplished by oxidative matrix polymerization of pyrrole (Py) monomer with Ce(IV) in the presence of poly(acrylic acid) (PAA), poly(vinyl pyrrolidone) (PVP), and copolymers (CP) of vinyl pyrrolidone(VP) with acrylic acid (AA) [VP/AA; 25/75 (CP1), 50/50 (CP2), 75/25 (CP3)]. The soluble and insoluble interpolymer complexes were observed according to the nature (and conformation) of polymers in mixture, the ratio of components, and the pH of solutions. The role of PAA, PVP, CP, Py, and Ce(IV) concentrations, the order of component addition, and the pH of the solutions were investigated. The evidence and structural reasons for the formation of soluble interpolymer complexes of PPy with different polymers are discussed. It is proposed that the compactization of the polymer matrix as well as the disturbance of the regularity of reactive groups on the polymer chain decreases the possibility of formation of soluble interpolymer complexes. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35: 1255–1263, 1997  相似文献   

11.
Grassi M  Daquino V 《Annali di chimica》2005,95(7-8):579-591
The binding of Cd (II) by the fulvic acid from a Suwannee River (FA) was investigated at various pH values and reactants ratios by 113Cd NMR and fluorescence spectroscopy. The NMR results provided evidences that the FA-Cd interactions occur through a variety of binding modes and mechanisms. Different kinds of organically bound Cd-species were detected in the 1.8-10.8 pH range depending on the FA/Cd ratios. Labile complexes (amenable to Cd-aminoacidic and Cd-hydroxy interactions or outer-sphere complexes) were observed at low pH and FA/Cd levels while stronger interactions (of carboxylate-type or inner-sphere complexation) took place as the pH and/or the FA concentration were increased. At pH ca. 6 insoluble FA-Cd adducts were primarily produced but, at relatively large FA concentration, only soluble complexes, stable in the whole pH 1.8-10.8 range, were formed. A complementary analysis, by fluorescence spectroscopy, provided clear evidences of FA-Cd association/aggregation phenomena. While no noticeable effects occurred with soluble samples, the formation of insoluble adducts led to significant enhancements of the emission fluorescence spectra. Although other explanations could not be excluded, this result was accounted for by modifications of the optical properties of the ligand itself due to sedimentation of the heavier components. Fluorescence enhancement was also observed on samples before the effective precipitation and interpreted as spectroscopic evidence of the onset of aggregation phenomena.  相似文献   

12.
Complex coacervation between proteins and polysaccharides is a demixing process mainly driven by electrostatic interactions. During this process many structural transitions occur, involving the formation of soluble complexes, aggregated complexes, and coacervates. The dynamic mechanism of complexation/coacervation was studied on beta-lactoglobulin (BLG)/Acacia gum (AG) mixed dispersions (0.1 wt% total concentration; BLG:AG ratio of 2:1) using small angle static light scattering (SALS). Acidification of BLG/AG dispersions was induced by dissolution of 0.11 wt% glucono-delta-lactone, allowing in situ SALS measurements. Time evolution of turbidity, scattered light intensity at 46 degrees scattering angle (I46) or slope of scattering functions at high q range revealed the existence of six pH-induced structural transitions. During BLG/AG complexation and before coacervation took place, scattering profiles displayed a monotonic decrease of I(q) as a function of q. A correlation peak in the scattering functions was only observed when coacervates appeared in the system. The wave vector q(max) corresponding to the maximum in scattered intensity first shifted toward larger q values, indicating an increasing number of coacervates, then shifted toward smaller q values, as a consequence of the system coarsening. The power laws q(max) approximately t(-alpha) and I(max) approximately t(-beta) gave values of 1.9 and 9.2, respectively, values much larger than those expected for intermediate and late stages of spinodal decomposition. From these results, it was concluded that complex coacervation between BLG and AG was a nucleation and growth type process. In addition, the temporal evolution of I46 followed power laws with two different exponents. First exponent corresponding to BLG/AG complexation was 3.0+/-0.3 and indicated a diffusion-controlled growth mechanism. Second exponent corresponding to the initiation of phase separation to the coacervation process was 6.5+/-0.3 and revealed an interfacially-controlled growth mechanism.  相似文献   

13.
We describe an original process for the treatment of low level activity radioactive liquid wastes. It deals with the electrochemical preparation of three polyacrylate polymers: polyacrylamide (PAam), polyacrylamidoglycolic acid (PAAG), polyacrylamidomethylpropanesulfonic acid (PAMPS) which are capable of complexing uranyl ions. We have demonstrated the complexation of uranyl by FT-IR and UV-Visible spectroscopy. All these complexes are soluble in water and we insolubilize in turn the complexes by crosslinking or by neutralization of positively charged complexes by the addition of polyanions to the medium. We have then done dynamic and static leaching tests on these insoluble complexes.  相似文献   

14.
制备了一类可生物降解肝素钠两性壳聚糖复合物(HPACS),并探索将其用于蛋白药物pH响应释放.两性壳聚糖由壳聚糖与丙烯酸加成反应得到,丙烯酸取代度可通过丙烯酸壳聚糖投料比调控;用胶体与pH浊度滴定研究了肝素钠与两性壳聚糖的复合作用,发现两组分在一定pH范围内能通过静电相互作用形成复合物,复合转变临界pH(pHΦ)与两性壳聚糖中丙烯酸取代度有关,取代度越低,pHΦ值越高.以牛血清白蛋白(BSA)为模型,测定了其在复合物中包埋及不同pH介质中的释药行为.结果表明,BSA可以在非常温和条件下有效包埋于复合物中,包埋率接近100%;BSA从复合物中释放具有很高的pH响应性,释放转变在很窄的pH范围内(<0.4pH单位)完成,释放转变临界pH(pH′Φ)可由两性壳聚糖中丙烯酸取代度调控.复合物形成和蛋白质释放在对pH依赖性上存在很好的相关性.同时还发现,在中性介质中(pH7.4),复合物对BSA具有很好的缓释作用,BSA持续释放时间可达15天左右.  相似文献   

15.
Copolymers of N-isopropylacrylamide with a fluorescent probe monomer were grafted to branched poly(ethyleneimine) to generate polycations that exhibited lower critical solution temperature (LCST) behavior. The structures of these polymers were confirmed by spectroscopy, and their phase transitions before and after complexation with DNA were followed using ultraviolet and fluorescence spectroscopy and light scattering. Interactions with DNA were investigated by ethidium bromide displacement assays, while temperature-induced changes in structure of both polymers and polymer-DNA complexes were evaluated by fluorescence spectroscopy, dynamic light scattering, laser Doppler anemometry, and atomic force microscopy (AFM) in water and buffer solutions. The results showed that changes in polymer architecture were mirrored by variations in the architectures of the complexes and that the overall effect of the temperature-mediated changes was dependent on the graft polymer architecture and content, as well as the solvent medium, concentrations, and stoichiometries of the complexes. Furthermore, AFM indicated subtle changes in polymer-DNA complexes at the microstructural level that could not be detected by light scattering techniques. Uniquely, variable-temperature aqueous-phase AFM was able to show that changes in the structures of these complexes were not uniform across a population of polymer-DNA condensates, with isolated complexes compacting above LCST even though the sample as a whole showed a tendency for aggregation of complexes above LCST over time. These results indicate that sample heterogeneities can be accentuated in responsive polymer--DNA complexes through LCST-mediated changes--a factor that is likely to be important in cellular uptake and nucleic acid transport.  相似文献   

16.
Complex formation between end group containing polyacrylamide and BSA has been studied in neutral water. Water soluble and insoluble complexes are formed when divalent copper ions are added to the solution.The contacts between protein and polyelectrolyte are achieved via chelate unit formation in which the copper ion is attached at the center. The solubility of the polycomplexes depends on protein/polymer ratio. Starting with very low concentration of protein in the system, phase separation takes place. Above the critical ratio of the protein/polymer, the mixture again exhibits water soluble character. The velocity of the formation of insoluble ternary complexes has been investigated by spectrophotometric method at different reaction conditions (preparation of mixture, ratio of components, low molecular salts, temperature and stirring, molecular weight of polyelectrolyte and Cu2+ concentration). A hypothetical structural scheme for the formation of soluble and insoluble ternary polycomplexes is proposed.  相似文献   

17.
γ-Aminobutyrohydroxamate resin that simulate siderophore analogues was prepared. The structure and conversion of functional groups of the resin were confirmed with IR spectra and elemental analysis. The influence of pH on adsorption of metal ions to the resin was examined. Uptake of metal ions increased with pH and was quantitative in the pH range of 4 to 6 for most of the lanthanides. These metal ions showed high exchange rates towards the resin. The complexation behavior of the resin was also investigated by means of IR and potentiometry. The dissociation constant, pKa of the hydroxamic hydroxyl group is 9.36. Stability constants of the insoluble lanthanide complexes on the resins were measured potentiometrically at 25 ± 0.1 °C and ionic strength of 0.1 M KCl. The results were compared with those of the corresponding soluble lanthanide complexes. It was found that a higher stability of the resin resulted in an increase of the stability constants. The phenomena might be due to the length of the spacer in providing the proper geometry of the resin ligand for intramolecular metal complexation.  相似文献   

18.
The formation of soluble hydrogen-bonding interpolymer complexes between poly(acrylic acid) (PAA) and poly(acrylic acid-co-2-acrylamido-2-methyl-1-propane sulfonic acid)-graft-poly(N,N-dimethylacrylamide) (P(AA-co-AMPSA)-g-PDMAM) at pH=2.0 was studied. A viscometric study showed that in semidilute solution a physical gel is formed due to the interconnection of the anionic P(AA-co-AMPSA) backbone of the graft copolymer, in a transient network, by means of the complexes formed between the PDMAM side chains of the graft copolymer and PAA. Dynamic and static light scattering measurements, in conjunction with small-angle neutron scattering measurements, suggest the formation of core-shell colloidal nanoparticles in dilute solution, comprised by an insoluble PAA/PDMAM core surrounded by an anionic P(AA-co-AMPSA) corona. Even if larger clusters are formed in semidilute solution, the size of the insoluble core remains practically stable. Atomic force microscopy performed under ambient conditions reveal that the particles collapse and flatten upon deposition on a substrate, with dimensions close to the ones of the dry hydrophobic core.  相似文献   

19.
Copolymer of divinyl ether and maleic anhydride (DIVEMA) is known to possess some anti-tumor and immune-stimulating activity and use as a drug carrier in anti-tumor drug delivery systems. Samples of DIVEMA of different degrees of polymerization were synthesized and characterized. Interaction of the hydrolyzed water-soluble DIVEMA polyanions with poly(N-ethyl-4-vinylpyridinium) cations (PEVP) has been studied. According to the potentiometry data, almost all carboxylic groups of the polyanions were able to form ion pairs with PEVP. In aqueous and water-salt solutions, formation of either soluble or insoluble polyelectrolyte complexes occurred depending on pH, ratio of the oppositely charged groups, and degree of polymerization of PEVP and/or DIVEMA. The phase separations followed general rules revealed by studying mixtures of PEVP and polycarboxylic acids. However in the case of DIVEMA, a significant broadening of the region for insoluble complexes at the expense of the region of soluble complexes was established. The data obtained demonstrate plausible advantages of the complex formation as the non-covalent modification of the polymeric carrier that endow DIVEMA with the ability for reversible soluble-insoluble transformation, in particular at physiological pH and ionic strength.  相似文献   

20.
The effects of polymer concentration, molecular weight of poly(acrylic acid) (PAA), addition of sodium, potassium, ammonium and copper (II) chlorides on the complex formation ability of the system PAA-poly(acrylamide) (PAAM) have been studied in aqueous solutions. The critical pH values of the complexation were determined in different conditions. The complex formation ability of PAAM is compared with other non-ionic polymers. It was shown that an increase in polymers concentration, molecular weight of PAA and ionic strength favours the complexation and shifts the critical pH values to the higher pH region. An addition of CuCl2 to the mixture of two polymers enhances the complexation drastically due to the formation of triple complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号