首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
First, the characteristics of low-velocity conveying of particles having different hardness are experimentally investigated in a horizontal pipeline in terms of flow pattern and pressure drop to show that the slug flow can be classified into two types depending on the settling of particles along the pipeline, and the period is small for slug flow without the settled layer, which is called solitary slug flow. The pressure drop for soft particles is shown to be larger than that for hard particles. Then, experimental results are presented on horizontal fluidized-bed conveying of fine powders to show that air release from the top surface of the conveying channel is an imnortant factor for high mass flow rate of particles.  相似文献   

2.
Current models for pressure drop prediction of slug flow pneumatic conveying in a horizontal pipeline system assume some type of steady state conditions for prediction,which limits their capability for increased predictive accuracy relative to experimental data.This is partly because of the nature of slug flow pneumatic conveying system,which,as a dynamic system,never becomes stable.By utilising conservation of mass (airflow),a dynamic pressure analysis model is proposed on the basis of the derivative of the upstream pressure behaviour.The rate of air permeation through slug,one of the important factors in the conservation model,is expressed as a function of a slug permeability factor.Other factors such as slug velocity,slug length and the fraction of stationary layer were also considered.Several test materials were conveyed in single-slug tests to verify the proposed pressure drop model,showing good agreement between the model and experimental results.  相似文献   

3.
Current models for pressure drop prediction of slug flow pneumatic conveying in a horizontal pipeline system assume some type of steady state conditions for prediction, which limits their capability for increased predictive accuracy relative to experimental data. This is partly because of the nature of slug flow pneumatic conveying system, which, as a dynamic system, never becomes stable. By utilising conservation of mass (airflow), a dynamic pressure analysis model is proposed on the basis of the derivative of the upstream pressure behaviour. The rate of air permeation through slug, one of the important factors in the conservation model, is expressed as a function of a slug permeability factor. Other factors such as slug velocity, slug length and the fraction of stationary layer were also considered. Several test materials were conveyed in single-slug tests to verify the proposed pressure drop model, showing good agreement between the model and experimental results.  相似文献   

4.
栓状流密相气力输送   总被引:5,自引:0,他引:5  
范椿 《力学进展》2002,32(4):599-612
首先介绍了气力输送的实验设备.评述了水平栓流气力输送的压力降计算方法,用3种不同的方法计算了压力降并与实验数据进行比较.此外评述了用特征线方法进行水平管的数值模拟,倾斜管的压力降计算和长距离的栓流气力输送.最后展望了该领域的发展方向.   相似文献   

5.
Processes involving biomass are of growing interest, but handling and conveying biomass particles are challenging due to the unusual physical properties of biomass particles. This paper reviews recent work on pneumatic conveying of biomass particles, especially agricultural particles and pulp fibres. Experimental work has been mainly carried out to determine a range of parameters, such as pressure drop, particle velocity, flow regime and electrostatic charging for both horizontal and vertical conveying. Models ranging from empirical to CFD models are also being developed. Difficulties in representing turbulence and interactions among biomass particles and between the particles and fluid have so far limited the success of advanced modeling. Further work is needed to improve understanding of multiphase biomass pneumatic conveying and to assist in the development of biomass energy and conversion processes.  相似文献   

6.
Processes involving biomass are of growing interest, but handling and conveying biomass particles are challenging due to the unusual physical properties of biomass particles. This paper reviews recent work on pneumatic conveying of biomass particles, especially agricultural particles and pulp fibres. Experimental work has been mainly carried out to determine a range of parameters, such as pressure drop, particle velocity, flow regime and electrostatic charging for both horizontal and vertical conveying. Models ranging from empirical to CFD models are also being developed. Difficulties in representing turbulence and interactions among biomass particles and between the particles and fluid have so far limited the success of advanced modeling. Further work is needed to improve understanding of multiphase biomass pneumatic conveying and to assist in the development of biomass energy and conversion processes.  相似文献   

7.
During gas–solid mixture conveying in a dense phase, material is conveyed in dunes on the bottom of the pipeline, or as a pulsating moving bed. This phenomenon increases the pressure drop and power consumption. We introduce a new technique to reduce the pressure drop, which is termed the perforated double tube. To validate this new model, the gas–solid flow pattern and pressure drop were studied numerically and experimentally. The power consumption was also studied experimentally. Numerical studies were performed by the Eulerian–Lagrangian approach to predict gas and particle movement in the pipeline. Comparisons between the numerical predictions and the experimental results for the gas–solid flow patterns and pressure drop show good agreement.  相似文献   

8.
Current modelling techniques for the prediction of conveying line pressure drop in low velocity dense phase pneumatic conveying are largely based on steady state analyses.Work in this area has been on-going for many years with only marginal improvements in the accuracy of prediction being achieved.Experimental and theoretical investigations undertaken by the authors suggest that the flow mechanisms involved in dense phase conveying are dominated by transient effects rather than those of steady state and are possibly the principal reasons for the limited improvement in accuracy.This paper reports on investigations on the pressure fluctuation behaviour in dense phase pneumatic conveying of powders.The pressure behaviour of the gas flow in the top section of the pipeline was found to exhibit pulsatile oscillations.In particular,the pulse velocity showed variation in magnitude while the frequency of the oscillations rarely exceeded 5 Hz.A wavelet analysis using the Daubechie 4 wavelet found that the amplitude of the oscillations increased along the pipeline.Furthermore,there was significant variation in gas pulse amplitude for different types of particulate material.  相似文献   

9.
Current modelling techniques for the prediction of conveying line pressure drop in low velocity dense phase pneumatic conveying are largely based on steady state analyses. Work in this area has been on-going for many years with only marginal improvements in the accuracy of prediction being achieved. Experimental and theoretical investigations undertaken by the authors suggest that the flow mechanisms involved in dense phase conveying are dominated by transient effects rather than those of steady state and are possibly the principal reasons for the limited improvement in accuracy. This paper reports on investigations on the pressure fluctuation behaviour in dense phase pneumatic conveying of powders. The pressure behaviour of the gas flow in the top section of the pipeline was found to exhibit pulsatile oscillations. In particular, the pulse velocity showed variation in magnitude while the frequency of the oscillations rarely exceeded 5 Hz. A wavelet analysis using the Daubechie 4 wavelet found that the amplitude of the oscillations increased along the pipeline. Furthermore, there was significant variation in gas pulse amplitude for different types of particulate material.  相似文献   

10.
In the pneumatic transport of polyethylene pellets in the horizontal pipeline, wavelike slugs which resemble solitary waves in an open channel are observed in a settled layer of the particles when a superficial air velocity is smaller than the saltation velocity by Zenz and those transport characteristics such as travelling velocity, length, period of appearance and pressure drop are measured. It is found that the pressure drop by the wavelike slug is estimated by the Ergun equation for the fixed bed.  相似文献   

11.
The gas/solid flow regime of dense-phase pneumatic conveying of pulverized coal under a pressure of 4.0 MPa in horizontal pipeline 10 mm in diameter, is monitored by electrical capacitance tomography (ECT) using 8 electrodes. To improve the accuracy of the capacitance measurement, an AC-based single-channel capacitance measuring circuit was developed, and a modified iterative Landweber algorithm was used to reconstruct the image. A two-fluid model based on the kinetic theory of granular flow was used to study the three-dimensional steady-state flow behavior of dense-phase pneumatic conveying of pulverized coal.  相似文献   

12.
This paper presents the results of an ongoing investigation into the fluctuations of pressure signals due to solids–gas flows for dense-phase pneumatic conveying of fine powders. Pressure signals were obtained from pressure transducers installed along different locations of a pipeline for the fluidized dense-phase pneumatic conveying of fly ash (median particle diameter 30 μm; particle density 2300 kg/m3; loose-poured bulk density 700 kg/m3) and white powder (median particle diameter 55 μm; particle density 1600 kg/m3; loose-poured bulk density 620 kg/m3) from dilute to fluidized dense-phase. Standard deviation and Shannon entropy were employed to investigate the pressure signal fluctuations. It was found that there is an increase in the values of Shannon entropy and standard deviation for both of the products along the flow direction through the straight pipe sections. However, both the Shannon entropy and standard deviation values tend to decrease after the flow through bend(s). This result could be attributed to the deceleration of particles while flowing through the bends, resulting in dampened particle fluctuation and turbulence. Lower values of Shannon entropy in the early parts of the pipeline could be due to the non-suspension nature of flow (dense-phase), i.e., there is a higher probability that the particles are concentrated toward the bottom of pipe, compared with dilute-phase or suspension flow (high velocity), where the particles could be expected to be distributed homogenously throughout the pipe bore (as the flow is in suspension). Changes in straight-pipe pneumatic conveying characteristics along the flow direction also indicate a change in the flow regime along the flow.  相似文献   

13.
蒸汽参数对管路系统动力特性的影响研究   总被引:1,自引:0,他引:1  
考虑压力及流速等流体参数对管路弯曲运动的影响,改进了输流直管与弯管结构12方程模型,并利用算例进行了验证。基于此模型,应用传递矩阵方法进行复杂系统的动力学研究简便可行,与有限元等求解方法相比具有较大的优越性。论文通过多种压力或流速的计算对比,研究了蒸汽参数对于蒸汽管路系统固有特性的影响,发现蒸汽压力对于管路系统固有频率的影响程度主要与管截面参数有关,而流速的影响相对不大,论文结论对于工程实践具有一定的参考价值。  相似文献   

14.
An accurate estimation of the total pressure drop of a pipeline is important to the reliable design of a pneumatic conveying system. The present paper presents results from an investigation into the modelling of the pressure drop at a bend in the pneumatic conveying of fly ash. Seven existing bend models were used (in conjunction with solids friction models for horizontal and vertical straight pipes, and initial acceleration losses) to predict the total pipeline pressure drop in conveying fly ash (median particle diameter: 30 μm; particle density: 2300 kg/m3; loose-poured bulk density: 700 kg/m3) in three test rigs (pipelines with dimensions of 69 mm inner diameter (I.D.) × 168 m length; 105 mm I.D. × 168 m length; 69 mm I.D. × 554 m length). A comparison of the pneumatic conveying characteristics (PCC) predicted using the seven bend models and experimental results shows that the predicted total pipeline PCC and trends depend on the choice of bend model. While some models predict trends that agree with the experimental results, other models predicted greater bend pressure drops for the dense phase of fly ash than for the dilute phase. Models of Pan, R. (1992). Improving scale-up procedures for the design of pneumatic conveying systems. Doctoral dissertation, University of Wollongong, Australia, Pan, R., & Wypych, P.W. (1998). Dilute and dense phase pneumatic conveying of fly ash. In Proceedings of the sixth International Conference on Bulk Materials Storage and Transportation (pp. 183–189), Wollongong, NSW, Australia and Chambers, A.J., & Marcus, R.D. (1986). Pneumatic conveying calculations. In Proceedings of the second International Conference on Bulk Materials Storage and Transportation (pp. 49–52), Wollongong, Australia reliably predicted the bend losses for systems conveying fly ash over a large range of air flows.  相似文献   

15.
Fine particles play a significant role in many industrial processes. To study the dynamic behavior of fine particle and their deposition in rock fractures, the pneumatic conveying of fine particles (approximately 100 μm in diameter) through a small-scale horizontal slit (0.41 m × 0.025 m) was studied, which is useful for the sealing technology of underground gas drainage in coal mining production. The CFD–DEM method was adopted to model the gas-particle two-phase flow; the gas phase was treated as a continuum and modeled using computational fluid dynamics (CFD), particle motion and collisions were simulated using the DEM code. Then, the bulk movement of fine particles through a small-scale horizontal slit was explored numerically, and the flow patterns were further investigated by visual inspection. The simulation results indicated that stratified flow or dune flow can be observed at low gas velocities. For intermediate gas velocities, the flow patterns showed pulsation phenomena, and dune flow reappeared in the tail section. Moreover, periodic flow regimes with alternating thick and sparse stream structures were observed at a high gas velocity. The simulation results of the bulk movement of fine particles were in good agreement with the experimental findings, which were obtained by video-imaging experiments. Furthermore, the calculated pressure drop versus gas velocity profile was investigated and compared with relative experimental findings, and the results showed good agreement. Furthermore, the particle velocity vectors and voidage distribution were numerically simulated. Selected stimulation results are presented and provide a reference for the further study of fine particles.  相似文献   

16.
Blockage is an important phenomenon in particulate flow. Work was undertaken to provide a better understanding of key hydrodynamic multiphase flow factors which cause, or contribute to, stalling and blockage in particulate feeding systems such as those used for feeding biomass into reactors. Rubber and plastic particles were hydraulically conveyed along a horizontal rectangular duct leading to constrictions of different geometries. Experimental results showed that large size, irregular shape, high volumetric concentrations of particles, small constriction dimensions and particle compressibility all increased the likelihood of blockage. Reynolds number also had a significant effect on particle behaviour and blockage propensity. The pressure drop needed to break a blockage is also considered, based on a simple horizontal packed bed model.  相似文献   

17.
In the pneumatic conveying process, particles move to the bend under the influence of inertia to form a particle rope, which will cause serious wear between the particles and the pipe wall, and then the dune model is designed and installed in the 90° bend to reduce energy consumption and wear in this study. Firstly, the minimum pressure drop velocity of particles transported by different size dune models was obtained through experimental study. Then the energy saving mechanism of the dune model is studied by CFD-DEM coupling. The experimental results show that the installation of the dune model reduces the minimum pressure drop velocity. The numerical simulation results show that the number of collisions between the particles and the tube wall in the vertical tube decreases after the installation of the dune model, which reduces the energy loss. Moreover, the increasing of tail size of the dune model is beneficial to the diffusion and acceleration of the particles in the vertical tube.  相似文献   

18.
以空气作为输送动力、粉煤灰及玻璃微珠作为输送物料,对气力输送管道中气固两相流的流动特性进行了系统的试验研究.对管路系统的特性、操作条件、物料和气体的性质等影响气固两相流压力损失的主要因素进行了探讨.并在实验的基础上对两相流动的沉积速度、经济速度进行了确定.同时在对粉体受力分析的基础上建立了分层流动的物理及数学模型,通过对比数学模型计算值与试验值得出该数学模型具有一定的计算精度,能够用于指导分层流动的研究及应用.  相似文献   

19.
In this study, experiments on fly ash conveying were carried out with a home-made long-distance positive-pressure pneumatic conveying system equipped with a high performance electrical capacitance tomography system to observe the transient characteristics of gas–solid two-phase flow. The experimental results indicated that solids throughput increased with increasing solids–gas ratio when the conveying pipeline was not plugged. Moreover, the optimum operating state was determined for the 1000 m long conveying pipeline with a throttle plate of 26 orifices. At this state the solids throughput was about 12.97 t/h. Additionally, the transportation pattern of fly ash gradually changed from sparse–dense flow to partial and plug flows with increasing conveying distance because of the conveying pressure loss. These experimental results provide important reference data for the development of pneumatic conveying technology.  相似文献   

20.
The Characterization of the effects of surface wettability and geometry on pressure drop of slug flow in isothermal horizontal microchannels is investigated for circular and square channels with hydraulic diameter (D h ) of 700 μm. Flow visualization is employed to characterize the bubble in slug flow established in microchannels of various surface wettabilities. Pressure drop increases with decrease in surface wettability, while the channel geometry influences slug frequency. It is observed that the gas–liquid contact line in advancing and receding interfaces of bubble change with surface wettability in slug flows. Flow resistance, where capillary force is important, is estimated using Laplace–Young equation considering the change of dynamic contact angles of bubble. The experimental study also demonstrates that the liquid film presence elucidates the pressure drop variation of slug flows at various surface wettabilities due to diminishing capillary effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号