首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Yongjin Zou  Lixian Sun  Fen Xu 《Talanta》2007,72(2):437-442
A Prussian Blue (PB)/polyaniline (PANI)/multi-walled carbon nanotubes (MWNTs) composite film was fabricated by step-by-step electrodeposition on glassy carbon electrode (GCE). The electrode prepared exhibits enhanced electrocatalytic behavior and good stability for detection of H2O2 at an applied potential of 0.0 V. The effects of MWNTs thickness, electrodeposition time of PANI and rotating rate on the current response of the composite modified electrode toward H2O2 were optimized to obtain the maximal sensitivity. A linear range from 8 × 10−9 to 5 × 10−6 M for H2O2 detection has been observed at the PB/PANI/MWNTs modified GCE with a correlation coefficient of 0.997. The detection limit is 5 × 10−9 M on signal-to-noise ratio of 3. To the best of our knowledge, this is the lowest detection limit for H2O2 detection. The electrode also shows high sensitivity (526.43 μA μM−1 cm−2) for H2O2 detection which is more than three orders of magnitude higher than the reported.  相似文献   

2.
A polyaniline (PANI)/carbon nanotubes (CNTs) composite modified electrode was fabricated by galvanostatic electropolymerization of aniline on multi-walled carbon nanotubes (MWNTs)-modified gold electrode. The electrode thus prepared exhibits enhanced electrocatalytic behavior to the reduction of nitrite and facilitates the detection of nitrite at an applied potential of 0.0 V. Although the amperometric responses toward nitrite at MWNTs/gold and PANI/gold electrodes have also been observed in the experiments, these responses are far less than that obtained at PANI/MWNTs/gold electrode. The effects of electropolymerization time, MWNTs concentration and pH value of the detection solution on the current response of the composite modified electrode toward sodium nitrite, were investigated and discussed. A linear range from 5.0 × 10−6 to 1.5 × 10−2 M for the detection of sodium nitrite has been observed at the PANI/MWNTs modified electrode with a sensitivity of 719.2 mA M−1 cm−2 and a detection limit of 1.0 μM based on a signal-to-noise ratio of 3.  相似文献   

3.
A highly sensitive NOx sensor was designed and developed by electrochemical incorporation of copper nanoparticles (CuNP) on single-walled carbon nanotubes (SWCNT)-polypyrrole (PPy) nanocomposite modified Pt electrode. The modified electrodes were characterized by scanning electron microscopy and energy dispersive X-ray analysis. Further, the electrochemical behavior of the CuNP-SWCNT-PPy-Pt electrode was investigated by cyclic voltammetry. It exhibited the characteristic CuNP reversible redox peaks at −0.15 V and −0.3 V vs. Ag/AgCl respectively. The electrocatalytic activity of the CuNP-SWCNT-PPy-Pt electrode towards NOx is four-fold than the CuNP-PPy-Pt electrode. These results clearly revealed that the SWCNT-PPy nanocomposite facilitated the electron transfer from CuNP to Pt electrode and provided an electrochemical approach for the determination of NOx. A linear dependence (r2 = 0.9946) on the NOx concentrations ranging from 0.7 to 2000 μM, with a sensitivity of 0.22 ± 0.002 μA μM−1 cm−2 and detection limit of 0.7 μM was observed for the CuNP-SWCNT-PPy-Pt electrode. In addition, the sensor exhibited good reproducibility and retained stability over a period of one month.  相似文献   

4.
A novel bimediator amperometric sensor is fabricated for the first time by surface modification of graphite electrode with thionine (TH) and nickel hexacyanoferrate (NiHCF). The electrochemical behavior of the TH/NiHCF bimediator modified electrode was characterized by cyclic voltammetry, differential pulse voltammetry and chronoamperometry. The TH/NiHCF bimediator modified electrode exhibited a pair of distinct redox peaks for NiHCF and TH with formal potentials of 0.33 V and −0.27 V vs. SCE at a scan rate of 50 mV s−1 in 0.1 M NaNO3 and 0.1 M NH4NO3 respectively. The electrocatalytic activity of the bimediator modified electrode towards oxidation of gallic acid with NiHCF and reduction of hydrogen peroxide with TH was evaluated and it was observed that the modified electrode showed an electrocatalytic activity towards the oxidation of gallic acid in the concentration range of 4.99 × 10−6–1.20 × 10−3 M with a detection limit of 1.66 × 10−6 M (S/N = 3) and reduction of H2O2 in the concentration range of 1.67 × 10−6–1.11 × 10−3 M with a detection limit of 5.57 × 10−7 M (S/N = 3). The bimediator modified electrode was found to exhibit good stability and reproducibility.  相似文献   

5.
A modified glassy carbon electrode was prepared by depositing a composite of polymer and mediator on a glassy carbon electrode (GCE). The mediator, flavin adenine dinucleotide (FAD) and the polymer, poly(3,4-ethylenedioxythiophene) (PEDOT) were electrochemically deposited as a composite on the GCE by applying cyclic voltammetry (CV). This modified electrode is hereafter designated as GCE/PEDOT/FAD. FAD was found to significantly enhance the growth of PEDOT. Electrochemical quartz crystal microbalance (EQCM) analysis was performed to study the mass changes in the electrode during the electrodeposition of PEDOT, with and without the addition of FAD. The optimal cycle number for preparing the modified electrode was determined to be 9, and the corresponding surface coverage of FAD (ΓFAD) was ca. 5.11 × 10−10 mol cm−2. The amperometric detection of iodate was performed in a 100 mM buffer solution (pH 1.5). The GCE/PEDOT/FAD showed a sensitivity of 0.78 μA μM−1 cm−2, a linear range of 4–140 μM, and a limit of detection of 0.16 μM for iodate. The interference effects of 250-fold Na+, Mg2+, Ca2+, Zn2+, Fe2+, Cl, NO3, I, SO42− and SO32−, with reference to the concentration of iodate were negligible. The long-term stability of GCE/PEDOT/FAD was also investigated. The GCE/PEDOT/FAD electrode retained 82% of its initial amperometric response to iodate after 7 days. The GCE/PEDOT/FAD was also applied to determine iodate in a commercial salt.  相似文献   

6.
We report the synthesis and the electrochemical properties of hybrid films made of zinc oxide (ZnO) and Meldola's blue dye (MB) using cyclic voltammetry (CV). MB/ZnO hybrid films were electrochemically deposited onto glassy carbon, gold and indium tin oxide-coated glass (ITO) electrodes at room temperature (25 ± 2 °C) from the bath solution containing 0.1 M Zn(NO3)2, 0.1 M KNO3 and 1 × 10−4 M MB. The surface morphology and deposition kinetics of MB/ZnO hybrid films were studied by means of scanning electron microscopy (SEM), atomic force microscopy (AFM) and electrochemical quartz crystal microbalance (EQCM) techniques, respectively. SEM and AFM images of MB/ZnO hybrid films have revealed that the surfaces are well crystallized, porous and micro structured. MB molecules were immobilized and strongly fixed in a transparent inorganic matrix. MB/ZnO hybrid films modified glassy carbon electrode (MB/ZnO/GC) showed one reversible redox couple centered at formal potential (E0′) −0.12 V (pH 6.9). The surface coverage (Γ) of the MB immobilized on ZnO/GC was about 9.86 × 10−12 mol cm−2 and the electron transfer rate constant (ks) was determined to be 38.9 s−1. The MB/ZnO/GC electrode acted as a sensor and displayed an excellent specific electrocatalytic response to the oxidation of nicotinamide adenine dinucleotide (NADH). The linear response range between 50 and 300 μM NADH concentration at pH 6.9 was observed with a detection limit of 10 μM (S/N = 3). The electrode was stable during the time it was used for the full study (about 1 month) without a notable decrease in current. Indeed, dopamine (DA), ascorbic acid (AA), acetaminophen (AP) and uric acid (UA) did not show any interference during the detection of NADH at this modified electrode.  相似文献   

7.
Iridium oxide nanoparticles are grown on a glassy carbon electrode by electrodepositing method. The electrochemical behavior and electrocatalytic activity of modified electrode towards reduction of iodate and periodate are studied. The reductions of both ions occur at the unusual positive peak potential of 0.7 V vs. reference electrode. The modified electrode is employed successfully for iodate and periodates detection using cyclic voltammetry, hydrodynamic amperometry and flow injection analysis (FIA). In the performed experiments, flow injection amperometric determination of iodate and periodate yielded calibration curves with the following characteristics: linear dynamic range up to 100 and 80 μM, sensitivity of 140.9 and 150.6 nA μM−1 and detection limits of 5 and 36 nM, respectively. The repeatability of the modified electrode for 21 injections of 1.5 μM of iodate solution is 1.5%. The interference effects of NO2, NO3, ClO3, BrO3, ClO4, SO42−, Cu2+, Zn2+, Mn2+, Mg2+, Cd2+, Ca2+, Na+, K+, NH4+ and K+, CH3COO and glucose were negligible at the concentration ratio of more than 1000. The obtained attractive analytical performance together with high selectivity and simplicity of the proposed method provide an effective and e novel modified electrode to develop an iodate and periodate sensor. Sensitivity, selectivity, the liner concentration range and the detection limit of the developed sensor are all much better than all known similar sensors in the literature for iodate and periodate determination.  相似文献   

8.
Xiang C  Zou Y  Sun LX  Xu F 《Talanta》2007,74(2):206-211
A robust and effective nanohybrid film based on gold nanoparticles (GNPs)/chitosan (Chit)/multi-walled carbon nanotubes (MWNTs) was prepared by a layer-by-layer self-assembly technique. Cytochrome c (Cyt c) was successfully immobilized on the nanohybrid film modified glassy carbon (GC) electrode by cyclic voltammetry. The direct electron transfer between Cyt c and the modified electrode was investigated in detail. Cyt c shows a couple of quasi-reversible and well-defined cyclic voltammetry peaks with a formal potential (E0′) of −0.16 V (versus Ag/AgCl) in pH 7.0 phosphate buffer solution (PBS). The Cyt c/GNPs/Chit/MWNTs modified GC electrode gives an improved electrocatalytic activity towards the reduction of hydrogen peroxide (H2O2). The sensitivity is 92.21 μA mM−1 cm−2 and the calculated apparent Michaelis-Menten constant () is 0.791 mM, indicating a high-catalytic activity of Cyt c. The catalysis currents increase linearly to the H2O2 concentration in a wide range of 1.5 × 10−6 to 5.1 × 10−4 M with a correlation coefficient 0.999. The detection limit is 9.0 × 10−7 M (at the ratio of signal to noise, S/N = 3). Moreover, the modified electrode displays rapid response (5 s) to H2O2, and possesses good stability and reproducibility.  相似文献   

9.
Novel Pt nanoparticles (PN) ensemble on macroporous carbon (MPC) hybrid nanocomposites (PNMPC) were prepared through a rapidly and simple one-step microwave-assisted heating procedure. The obtained PNMPC was characterized by transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA) and electrochemical methods. The electrochemical reduction of nitrobenzene (NB) was thoroughly investigated at the PNMPC modified glassy carbon (GC) electrode, and the catalytic rate constant was calculated to be 3.14 × 104 M−1 s−1 for NB. A sensitive NB sensor was developed based on the PNMPC/GC electrode, which showed a wide linear range (1–200 μM), low detection limit (50 nM), high sensitivity (6.93 μA μM−1), excellent anti-interference ability and good stability. And moreover, the electrode was successfully applied to the determination of NB in real samples.  相似文献   

10.
Carbon nanoparticles (CNPs) and halloysite nanoclay (HNC) modified carbon paste electrode (HNC–CNP–CPE) was developed for the determination of methyl parathion (MP) and ethyl parathion (EP). The electrochemical behavior of these molecules was investigated employing cyclic voltammetry (CV), chronocoulometry (CC), electrochemical impedance spectroscopy (EIS) and potentiometric stripping analysis (PSA). After optimization of analytical conditions employing this electrode at pH 5.0 in acetate buffer (0.1 M), the peak currents were found to vary linearly with its concentration in the range of 1.55 × 10−9 to 3.67 × 10−6 M and 1.21 × 10−9 to 4.92 × 10−6 M for MP and EP, respectively. The detection limits (S/N = 3) of 4.70 × 10−10 M and 3.67 × 10−10 M were obtained for MP and EP, respectively, using PSA. The prepared modified electrode showed several advantages such as simple preparation method, high sensitivity, very low detection limits and excellent reproducibility. The proposed method was employed for the determination of MP and EP in fruits, vegetables, water and soil samples.  相似文献   

11.
Tunable polymerization of ionic liquid on the surfaces of multi-walled carbon nanotubes (MWCNTs) was achieved by a mild thermal-initiation-free radical reaction of 3-ethy-1-vinylimidazolium tetrafluoroborate in the presence of MWCNTs. Successful modification of polymeric ionic liquid (PIL) on MWCNTs surfaces (PIL-MWCNTs) was demonstrated by scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, thermogravimetric analysis and X-ray photoelectron spectroscopy. The resulting PIL-MWCNTs possessed unique features of high dispersity in aqueous solution and tunable thickness of PIL layer, due to positive imidazole groups along PIL chains and controllable ionic liquid polymerization by tuning the ratio of precursor. Based on cation-π interaction between the positive imidazole groups on PIL-MWCNTs surface and hydroquinone (HQ) or catechol (CC), excellent discrimination ability toward HQ and CC and improved simultaneous detection performance were achieved. The linear range for HQ and CC were 1.0 × 10−6 to 5.0 × 10−4 M and 1.0 × 10−6 to 4.0 × 10−4 M, respectively. The detection limit for HQ was 4.0 × 10−7 M and for CC 1.7 × 10−7 M (S/N = 3), correspondingly.  相似文献   

12.
Some nanostructures are reported to possess enzyme-mimetic activities similar to those of natural enzymes. Herein, highly-dispersed Pt nanodots on Au nanorods (HD- PtNDs@AuNRs) with mimetic peroxidase activity were designed as an active electrode modifier for fabrication of a hydrogen peroxide (H2O2) electrochemical sensor. The HD-PtNDs@AuNRs were synthesized by a seed-mediated growth approach and confirmed by scanning electron microscopy, transmission electron microscopy, energy dispersive X-ray spectroscopy, and UV–vis spectroscopy. The electrochemical and catalytical performances of HD-PtNDs@AuNRs towards H2O2 reduction were investigated in detail by cyclic voltammetry and amperometry. The HD-PtNDs@AuNRs modified electrode displayed a high catalytic activity to H2O2 at −0.10 V (versus SCE), a rapid response within 5 s, a wide linear range of 2.0–3800.0 μM, a detection limit of 1.2 μM (S/N = 3), and a high sensitivity of 181 μA mM−1 cm−2. These results suggested a promising potential of fabricating H2O2 electrochemical sensor using HD- PtNDs@AuNRs.  相似文献   

13.
A titanium dioxide–silicon carbide nanohybrid (TiO2–SiC) with enhanced electrochemical performance was successfully prepared through a facile generic in situ growth strategy. Monodispersed ultrafine palladium nanoparticles (Pd NPs) with a uniform size of ∼2.3 nm were successfully obtained on the TiO2–SiC surface via a chemical reduction method. The Pd-loaded TiO2–SiC nanohybrid (Pd@TiO2–SiC) was characterized by transmission electron microscopy and X-ray diffractometry. A method for the simultaneous electrochemical determination of hydroquinone (HQ) and bisphenol A (BPA) using a Pd@TiO2–SiC nanocomposite-modified glassy carbon electrode was established. Utilizing the favorable properties of Pd NPs, the Pd@TiO2–SiC nanohybrid-modified glassy carbon electrode exhibited electrochemical performance superior to those of TiO2–SiC and SiC. Differential pulse voltammetry was successfully used to simultaneously quantify HQ and BPA within the concentration range of 0.01–200 μM under optimal conditions. The detection limits (S/N = 3) of the Pd@TiO2–SiC nanohybrid electrode for HQ and BPA were 5.5 and 4.3 nM, respectively. The selectivity of the electrochemical sensor was improved by introducing 10% ethanol to the buffer medium. The practical application of the modified electrode was demonstrated by the simultaneous detection of HQ and BPA in tap water and wastewater samples. The simple and straightforward strategy presented in this paper are important for the facile fabrication of ultrafine metal NPs@metal oxide–SiC hybrids with high electrochemical performance and catalytic activity.  相似文献   

14.
Gold electrode surface is modified via covalent attachment of a synthesized thiol functionalized with 8-hydroxyquinoline, p-((8-hydroxyquinoline)azo) benzenethiol (SHQ), for the first time. The behavior of the nanostructured electrode surface (Au–SHQ) is characterized by electrochemical techniques including cyclic and differential pulse voltammetry (CV and DPV), and electrochemical impedance spectroscopy (EIS). The modified surface is stable in a wide range of potentials and pHs. A surface pKa of 6.0 ± 0.1 is obtained for Au–SHQ electrode using surface acid/base titration curves constructed by CV and EIS measurements as a function of pH. These results helped to determine the charge state of the surface as a function of pH. The gold modified electrode surface showed good affinity for sensing the Al(III) ion at pH 5.5. The sensing process is based on (i) accumulation and complex formation between Al(III) from the solution phase and 8HQ function on the Au electrode surface (recognition step) and (ii) monitoring the impedance of the Au–SHQ–Al(III) complex against redox reaction rate of parabenzoquinone (PBQ) (signal transduction step). The PBQ is found to be a more suitable probe for this purpose, after testing several others. Thus, the sensor was tested for quantitative determination of Al(III) from the solution phase. At the optimized conditions, a linear response, from 1.0 × 10−11 to 1.2 × 10−5 M Al(III) in semi-logarithmic scale, with a detection limit of 8.32 × 10−12 M and mean relative standard deviation of 3.2% for n = 3 at 1.0 × 10−7 M Al(III) is obtained. Possible interferences from coexisting cations and anions are also studied. The results show that many ions do not interfere significantly with the sensor response for Al(III). Validity of the method and applicability of the sensor are successfully tested by determination of Al(III) in human blood serum samples.  相似文献   

15.
Platinum nanoparticles (Pt NPs) were deposited onto multi-walled carbon nanotubes (MWNTs) through direct chemical reduction without any other stabilizing agents. Transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and cyclic voltammetry were employed to characterize the morphology of the as-prepared nanocomposite (noted as Pt NPs-MWNTs) and further identify the Pt NPs on the surface of MWNTs. The nanocomposite demonstrated the ability to electrocatalyze the oxidation of hydrogen peroxide and substantially raises the response current. A sensitivity of 591.33 μA mM−1 cm−2 was obtained at Pt NPs-MWNTs modified electrode. Thus, we immobilized glucose oxidase (GOD) as a model enzyme on the nanocomposite-based electrode with a thin layer of Nafion to fabricate a glucose biosensor, which showed sensitive and fast response to glucose. The influence of the GOD loading was investigated and the biosensor with an enzyme loading concentration of 10 mg/mL shows optimal performance for glucose detection, that is, a detection limit of 3 μM and a response time of 3 s, respectively.  相似文献   

16.
A simpler UV-vis spectrophotometric method was investigated for hydroquinone (HQ) determination using KMnO4 as oxidizing agent for conversion of HQ to p-benzoquinone (BQ) as well as signal enhancer. Various parameters such as analytical wavelength, stability time, temperature, pH, solvent effect and interference of chemicals were checked and parameters optimized by using 1 μg ml−1 standard solution of HQ. Beer's Law was applicable in the range of 0.07-2 μg ml−1 and 0.005-0.05 μg ml−1 at 245.5 nm and at 262 nm for aqueous standard solutions of HQ with linear regression coefficient value of 0.9978 and 0.9843 and detection limit of 0.021 μg ml−1 and 0.0016 μg ml−1 HQ, respectively. Standard deviation of 1.7% and 2.4% was true for 1 μg ml−1 and 0.03 μg ml−1 HQ solution (n = 11) run at respective wavelengths. The method was successfully applied to dilute waste photographic developer samples for free HQ determination.  相似文献   

17.
Qian L  Yang X 《Talanta》2006,68(3):721-727
A new amperometric biosensor for hydrogen peroxide was developed based on cross-linking horseradish peroxidase (HRP) by glutaraldehyde with multiwall carbon nanotubes/chitosan (MWNTs/chitosan) composite film coated on a glassy carbon electrode. MWNTs were firstly dissolved in a chitosan solution. Then the morphology of MWNTs/chitosan composite film was characterized by field-emission scanning electron microscopy. The results showed that MWNTs were well soluble in chitosan and robust films could be formed on the surface. HRP was cross-linked by glutaraldehyde with MWNTs/chitosan film to prepare a hydrogen peroxide biosensor. The enzyme electrode exhibited excellent electrocatalytic activity and rapid response for H2O2 in the absence of a mediator. The linear range of detection towards H2O2 (applied potential: −0.2 V) was from 1.67 × 10−5 to 7.40 × 10−4 M with correction coefficient of 0.998. The biosensor had good repeatability and stability for the determination of H2O2. There were no interferences from ascorbic acid, glucose, citrate acid and lactic acid.  相似文献   

18.
An electrochemical sensor for cinchonine (CCN) using the β-cyclodextrin (β-CD) modified poly(N-acetylaniline) (PAA) electrode has been developed, in which 1,4-hydroquinone (HQ) was chosen as a probe. Complexation of HQ with β-CD modified on the glassy carbon electrode (GCE) was examined by cyclic voltammetry (CV). HQ was included in the cavity of β-CD and reversible voltammograms were observed. In the presence of CCN, a competitive inclusion equilibrium with β-CD was established between HQ and CCN, lowering the peak current of HQ. The decrease in the peak current of HQ is directly proportional to the amount of CCN. Linear calibration plot was obtained over the range from 4.0 × 10−6 to 8.0 × 10−5 M with a detection limit (S/N = 3) of 2.0 × 10−6 M. From the inhibitory effect of CCN on the inclusion of HQ by β-CD, the apparent formation constant of CCN with the immobilized β-CD was estimated. This electrochemical sensor showed excellent sensitivity, repeatability, stability and recovery for the determination of CCN. The response mechanism of the sensor was discussed in detail. The optimum steric configuration of inclusion complex was presented by molecular dynamics simulation.  相似文献   

19.
《Analytical letters》2012,45(8):883-893
A multi-wall carbon nanotubes (MWNTs) and cobalt(II) tetrakisphenylporphyrin (Co(II)TPP) modified glassy carbon electrode (MWNTs/Co(II)TPP/GCE) has been prepared. It can be used for individual or simultaneous determination of hydroquinone (HQ) and catechol (CC). The anodic peaks of HQ and CC can be separated well. Owing to the unique properties of MWNTs and special synergistic effect of MWNTs and Co(II)TPP, the modified electrode exhibited a remarkable and stable current response for CC and HQ. The linear ranges for CC and HQ were 1.0–450.0 µmol L?1 and 0.8–400.0 µmol L?1 with detection limits of 0.8 µmol L?1 and 0.5 µmol L?1, respectively. Furthermore, Co(II)TPP, MWNTs, and Co(II)TPP/MWNTs composite were also used to construct modified electrodes and the electrochemical performances were studied.  相似文献   

20.
In the present work, a tube-like structure of graphene hybrid as modifier to fabricate electrode for simultaneous detection of ascorbic acid (AA), dopamine (DA), uric acid (UA) and tryptophan (Trp) was reported. The hybrid was synthesized by a simple method based on graphene sheets (GS) and 3,4,9,10-perylenetetracarboxylic acid (PTCA) via π–π stacking interaction under ultrasonic condition. The combination of GS and PTCA could effectively improve the dispersion of GS, owing to PTCA with the carboxylic-functionalized interface. Comparing with pure GS or PTCA modified electrode, GS–PTCA displayed high catalytic activity and selectivity toward the oxidation of AA, DA, UA, and Trp. Moreover, cyclic voltammetry, different pulse voltammetry and scanning electron microscopy were employed to characterize the sensors. The experiment results showed that the linear response range for simultaneous detection of AA, DA, UA, and Trp were 20–420 μM, 0.40–374 μM, 4–544 μM and 0.40–138 μM, respectively, and the detection limits were 5.60 μM, 0.13 μM, 0.92 μM and 0.06 μM (S/N = 3). Importantly, the proposed method offers promise for simple, rapid, selective and cost-effective analysis of small biomolecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号