首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
温倩  骞伟中  魏飞 《催化学报》2008,29(7):617-623
研究了在以甲烷化学气相沉积法制备单壁碳纳米管的过程中高温煅烧预处理(900℃煅烧10h)对Mo改性Fe/MgO催化剂的作用.发现这种预处理有利于Fe在催化剂中的稳定和分散,从而制备出管径均一的单壁碳纳米管.采用能谱元素分析、高分辨透射电镜、X射线衍射、比表面积测量、拉曼光谱和热重分析对样品进行了表征.结果表明,在碳纳米管生长的过程中,铁元素在催化剂表面富集,单壁碳纳米管生长于富集铁的纳米颗粒上,并存在碳管直径与铁颗粒尺寸的依赖关系.Mo存在时可煅烧形成FeMoO4复合氧化物,后者比MgFe2O4相更加稳定.Mo/Fe比例对提高单壁碳纳米管的生长密度、纯度与管径均一性等均有明显影响.上述研究对进一步精确控制制备单壁碳纳米管有重要意义.  相似文献   

2.
A systematic experimental study has been carried out on the efficiency of bimetallic catalysts based on Ni and the rare-earth elements Y, La, Ce, Nd, Gd, Tb, Dy, Ho, Er, and Lu (group A) and Eu, Sm, Yb, and Tm (group B) in the synthesis of single-walled carbon nanotubes (SWNTs). The two groups give quite different results when analyzed by a combination of SEM/TEM and Raman and UV-NIR spectroscopies. The elements in group A have an obvious catalytic effect and increase the yield of SWNTs dramatically, whereas those in group B are not efficient catalysts. The diameter distribution of the synthesized SWNTs was also affected by the rare-earth element used. For group A metals, there is a tendency that the fraction of small-diameter tubes decreases with decreasing ionic radius of the rare-earth element used. EDX and X-ray analyses indicate that group A metals deposit on the cathode deposits and form rare-earth carbides, whereas no group B metals are found in cathode deposits, except for a small amount of Tm present in the form of thulium carbide. Further analysis indicates that there is a very strong correlation between the ability to form rare-earth carbides and the catalytic efficiency for the formation of SWNTs.  相似文献   

3.
铁改性的Mo/ZSM-5催化剂上NO的选择性催化还原反应   总被引:2,自引:2,他引:2  
采用浸渍法制备了Mo/ZSM-5, Fe/ZSM-5和不同Fe和Mo摩尔比的Fe-Mo/ZSM-5样品, 并以氨为还原剂对其NO选择性催化还原活性以及反应条件对催化性能的影响进行了研究. 结果表明, Fe-Mo/ZSM-5样品的NOx转化率明显比单独的Mo/ZSM-5和Fe/ZSM-5的高. 当n(Fe):n(Mo)为1.5时, Fe-Mo/ZSM-5样品具有最佳催化性能, 其NOx转化率在430 ℃时达到了96%, 并且能在高空速和不同O2气浓度的条件下保持高的催化活性. 同时采用XRD和XPS技术分别对催化剂的体相结构和表面性质进行了研究, 结果表明, 当n(Fe):n(Mo)=1.5时, Fe和Mo元素之间以及与载体HZSM-5之间存在较强的相互作用, 并且其表面的Mo3d的含量最高. 这可能与其高的催化活性有关. 另外还发现, 在反应过程中Fe-Mo/ZSM-5催化剂表面的氮氧物种主要是吸附态NO, 因此可以推测NO的催化还原反应机理是, 在催化剂表面上, 吸附态NO与吸附NH3物种直接反应生成氮气, 而非经过氧化为NO2的途径.  相似文献   

4.
Single wall carbon nanotubes (SWNTs) were synthesized by electric arc discharge method with a mixture of nickel and yttrium as catalysts. The effect of the catalyst concentration on the synthesis of SWNTs was studied. Raman spectra of SWNTs have been recorded with excitation wavelengths from 476.5 to 1064 nm. The Raman peaks of the radial breathing modes (RBM) of SWNTs were assigned. The results indicate that the diameter distribution of SWNTs is in the range of 1.2-1.6 nm, and the SWNTs with diameter 1.43 nm are in the majority. The catalyst concentrations have large effect on the yield of SWNTs and little effect on the diameter distribution of SWNTs.  相似文献   

5.
张则尧  姚艺希  李彦 《物理化学学报》2022,38(8):2101055-86
单壁碳纳米管的直径可控生长是碳纳米管生长与应用领域的重要问题。直径在0.9–1.2 nm范围内的碳纳米管非常适合应用于近红外荧光生物成像领域和量子器件单光子光源之中。本文使用FeCo/MgO催化剂生长出了直径在这一范围内的体相单壁碳纳米管,并研究了催化剂制备和CVD生长条件对碳纳米管直径的影响。催化剂前驱体的制备是获得小尺寸催化剂颗粒的关键步骤。在浸渍过程中,使用难水解的金属硫酸盐作为前驱体、降低浸渍pH以及加入络合剂分子都会抑制溶液干燥过程中金属盐的水解,从而控制催化剂的尺寸,使其适合于生长出直径可控的单壁碳纳米管。在CVD生长过程中,使用乙醇作为碳源、使用较低的碳氢比例也有利于小直径碳纳米管的生长。  相似文献   

6.
Transition-metal-free oxides were studied as heterogeneous catalysts for the sustainable epoxidation of alkenes with aqueous H?O? by means of high throughput experimentation (HTE) techniques. A full-factorial HTE approach was applied in the various stages of the development of the catalysts: the synthesis of the materials, their screening as heterogeneous catalysts in liquid-phase epoxidation and the optimisation of the reaction conditions. Initially, the chemical composition of transition-metal-free oxides was screened, leading to the discovery of gallium oxide as a novel, active and selective epoxidation catalyst. On the basis of these results, the research line was continued with the study of structured porous aluminosilicates, gallosilicates and silica-gallia composites. In general, the gallium-based materials showed the best catalytic performances. This family of materials represents a promising class of heterogeneous catalysts for the sustainable epoxidation of alkenes and offers a valid alternative to the transition-metal heterogeneous catalysts commonly used in epoxidation. High throughput experimentation played an important role in promoting the development of these catalytic systems.  相似文献   

7.
Single-wall carbon nanotubes (SWNTs) with high surface area were synthesized over nanoporous Co-Mo/MgO by a chemical vapor deposition (CVD) method. The SWNTs were used as catalyst support for selective hydrogenation of syngas to hydrocarbons. Here an extensive study of Fischer-Tropsch synthesis (FTS) on CNT-supported cobalt catalysts with different amounts of cobalt loading up to 40 wt% is reported. The catalysts were characterized by different methods including N2 adsorption-desorption, X-ray diffraction, hydrogen chemisorption, inductively coupled plasma (ICP) and temperature-programmed reduction. Enhancement of the reducibility of Co3O4 to CoO, CoO to Coo and small cobalt oxide particles, dispersion of the cobalt, and activity and selectivity of FTS were investigated and compared with a conventional support. The CNT supported catalysts achieve a high dispersion and high loading of the active metal, cobalt in particular, so that the bulk formation of cobalt metal, which tends to occur in conventional support, can be avoided. The results showed that the specific activity of CNT supported catalysts increase significantly (there is a two fold increase in CO Conversion per gram of the active metal) with respect to the conventional supported catalyst.  相似文献   

8.
Single-wall carbon nanotubes (SWNTs) with high surface area were synthesized over nanoporous Co-Mo/MgO by a chemical vapor deposition (CVD) method. The SWNTs were used as catalyst support for selective hydrogenation of syngas to hydrocarbons. Here an extensive study of Fischer-Tropsch synthesis (FTS) on CNT-supported cobalt catalysts with different amounts of cobalt loading up to 40 wt% is reported. The catalysts were characterized by different methods including N2 adsorption-desorption, X-ray diffraction, hydrogen chemisorption, inductively coupled plasma (ICP) and temperature-programmed reduction. Enhancement of the reducibility of Co3O4 to CoO, CoO to Coo and small cobalt oxide particles, dispersion of the cobalt, and activity and selectivity of FTS were investigated and compared with a conventional support. The CNT supported catalysts achieve a high dispersion and high loading of the active metal, cobalt in particular, so that the bulk formation of cobalt metal, which tends to occur in conventional support, can be avoided. The results showed that the specific activity of CNT supported catalysts increase significantly (there is a two fold increase in CO Conversion per gram of the active metal) with respect to the conventional supported catalyst.  相似文献   

9.
《Chemical physics letters》2001,331(1-2):19-26
It was found that the addition of molybdenum to Co/MgO catalysts could remarkably increase the yield and also improve the quality of single-walled carbon nanotubes (SWNTs) from catalytic decomposition of methane. The generation rate of SWNTs was raised at least 10 times and the formation of amorphous carbon was suppressed. But there is an optimum content of Mo and Co, beyond which multi-walled carbon nanotubes (MWNTs) were formed. In other words, the relative amount of SWNTs and MWNTs could be controlled by the composition of catalysts. The obtained SWNTs showed a very high BET surface area. The promotion role of molybdenum was discussed.  相似文献   

10.
通过调控共沉淀中钼酸铵溶液的酸度制备了系列铁钼催化剂,采用N_2吸附-脱附、Raman、XRD、SEM、H2-TPR等方法对催化剂的结构进行了表征,并考察了不同酸度条件下制备的铁钼催化剂的甲醇氧化制甲醛催化活性。结果表明,钼酸铵溶液酸度影响催化剂的粒径、形貌及表层铁、钼物种的分布与富集。恰当的钼酸铵溶液酸度范围,优化了催化剂表层MoO_3和Fe_2(MoO_4)_3物种的比例,改善了催化剂的催化氧化性能,有利于甲醇氧化制甲醛收率和选择性的提高。  相似文献   

11.
The role of various technologies in oil refining and petrochemistry changes due to amendments to the requirements for fuel quality. The development of these technologies requires the improvement of catalysts. This paper outlines main procedures for the production of dealuminated zeolites, as well as the advantages and drawbacks of these procedures. Catalysts with a high desulfurizing ability for the hydrocracking of vacuum gas-oil to gasoline and diesel fractions and catalysts for the isomerization of fuel hydrocarbons can be prepared using ultrastable Y-type zeolites. The results of testing of zeolite-containing binary catalytic systems in Fischer-Tropsch synthesis are presented.  相似文献   

12.
A method for noncovalent functionalization of DNA-wrapped single-walled carbon nanotubes (SWNTs) using platinum-based DNA cross-linkers is investigated. In particular, cisplatin and potassium tetrachloroplatinate are shown to bind to DNA that encapsulates SWNTs in aqueous solution. The bound platinum salt can then be reduced to decorate the DNA-encapsulated SWNTs with platinum nanoparticles. The resulting SWNT/DNA/Pt hybrids are investigated by optical absorption spectroscopy, circular dichroism spectroscopy, Raman spectroscopy, X-ray diffraction, transmission electron microscopy, and atomic force microscopy. The unique combination of catalytic activity of nanoscale platinum, biological functionality of DNA, and optoelectronic properties of SWNTs suggests a myriad of applications including fuel cells, catalysts, biosensors, and electrochemical devices.  相似文献   

13.
Carbon nanostructures were synthesized by the pyrolysis of an CH4-H2 mixture. The synthesis was carried out on the Fe-Mo catalysts supported on the SiO2 surface by high-frequency diode sputtering or chemical deposition from a solution of a heterometallic carbonylchalcogenide complex. Structure features of the formed carbon nanostructures affected by the size of catalytic particles, temperature of the process, and composition of the gas mixture were revealed. The presence of sulfur in the catalyst composition results in the formation of nanofibers with the bamboo-like structure. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 8, pp. 1372–1376, August, 2006.  相似文献   

14.
In the last few decades, the synthesis and catalytic application of nanoscaled particles prepared from Group 8–10 (formerly Group VIIIB) elements have been widely explored and have achieved promising results. The innovative use of these nanoparticle catalysts may provide new opportunities in the efficient combination of conventionally used homogenous and heterogeneous catalysts. Conventional homogeneous catalysts pose extraction and recycling difficulties when dealing with metal complexes and/or ligands, whereas heterogeneous catalysts generally require more pressing experimental conditions, such as high temperatures and high pressures, to be effective. Therefore, to solve these problems, the synthesis and use of nanoparticle catalysts as replacements for conventional catalytic systems is a breakthrough owing to their improved handling and environmental and economic aspects. This Focus Review primarily addresses the catalytic applications of neutral Group 8–10 nanoparticles with an average size of less than 10 nm, and also includes a discussion of commonly used synthetic methodology.  相似文献   

15.
A series of precipitated CuO-ZnO-Al_2O_3 catalysts for methanolsynthesis have been prepared and their catalytic activities under differentreaction conditions(temperature,pressure,space velocity)have been tested.By means of TPR,TG,the reduction behavior of typical catalyst sample andbinary sample CuO-Al_2O_3 was comparatively investigated.The resultsindicate that the autocatalysis in reduction process of Cu-based catalystcorrelates with the CuO crystallinity.  相似文献   

16.
对浸渍法制备的Cu-Mn/SiO2催化剂进行了甲醇合成的活性评价,同时用XPS、Auser、N2O分解,TPR等技术对催化剂进行了表征.结果表明,在双组份催化剂中,工作态催化剂表面主要存在Cu(O).催化反应可能通过Cu…O-Mn氧桥的长程诱导交换作用,使Cu带部分正电荷,这有利于CO与H2的吸附和活化,从而提高甲醇合成的收率.  相似文献   

17.
Well hexagonally ordered NbSBA-15 catalysts synthesized by an efficient hydrothermal method were used, for the first time, for the selective synthesis of vitamin K(3) by liquid-phase oxidation of 2-methyl-1-naphthol (2MN1-OH) under various reaction conditions. The recyclable NbSBA-15 catalysts were also reused to find their catalytic activities. To investigate the leaching of non-framework niobium species on the surface of silica networks, the results of original and recyclable NbSBA-15 catalysts were correlated and compared. To find an optimum condition for the selective synthesis of vitamin K(3), the washed NbSBA-15(2.2pH) was extensively used in this reaction with various reaction parameters such as temperature, time and ratios of reactant (2M1N-OH to H(2)O(2)), and the obtained results were also demonstrated. Additionally, the liquid-phase oxidation of 2M1N-OH was carried out with different solvents to find the best solvent with a good catalytic activity. Based on the all catalytic studies, the vitamin K(3) selectivity (97.3%) is higher in NbSBA-15(2.2pH) than that of other NbSBA-15 catalysts, and the NbSBA-15(2.2pH) is found to be a highly active and eco-friendly heterogeneous catalyst for the selective synthesis of vitamin K(3).  相似文献   

18.
As a promising one-dimensional material for building nanodevices, single-wall carbon nanotubes (SWNTs) should be organized into a rational architecture on the substrate surface. In this study, horizontally aligned SWNTs with two alignment modes were synthesized on the same R-plane sapphire wafer by chemical vapor deposition with cationized ferritins as catalysts. In the middle part of the wafer, SWNTs were aligned on the R-plane sapphire in the direction [1101]. At the edge of the wafer, SWNTs were aligned in the tangential direction to the wafer edge. The comparison of these two groups of SWNTs suggests the competition between the two alignment modes and indicates that atomic steps in high density have superior influence on the SWNTs' alignment to the crystal structure on the surface of the sapphire substrate. A "raised-head" growth mechanism model is proposed to explain why catalysts can stay active during the horizontally aligned growth of relatively long SWNTs with the strong interaction between SWNTs and the sapphire substrate.  相似文献   

19.
The catalytic oxidation of carbon monoxide to carbon dioxide is an important process used in several areas such as respiratory protection, industrial air purification, automotive emissions control, CO clean-up of flue gases and fuel cells. Research in this area has mainly focused on the improvement of catalytic activity at low temperatures. Numerous catalyst systems have been proposed, including those based on Pt, Pd, Rh, Ru, Au, Ag, and Cu, supported on refractory or reducible carriers or dispersed in perovskites. Well known commercial catalyst formulations for room temperature CO oxidation are based on CuMn2O4 (hopcalite) and CuCoAgMnOx mixed oxides. We have applied high-throughput and combinatorial methodologies to the discovery of more efficient catalysts for low temperature CO oxidation. The screening approach was based on a hierarchy of qualitative and semi-quantitative primary screens for the discovery of hits, and quantitative secondary screens for hit confirmation, lead optimization and scale-up. Parallel IR thermography was the primary screen, allowing one wafer-formatted library of 256 catalysts to be screened in approximately 1 hour. Multi-channel fixed bed reactors equipped with imaging reflection FTIR spectroscopy or GC were used for secondary screening. Novel RuCoCe compositions were discovered and optimized for CO oxidation and the effect of doping was investigated for supported and bulk mixed oxide catalysts. Another family of active hits that compare favorably with the Pt/Al2O3 benchmark is based on RuSn, where Sn can be used as a dopant (e.g. RuSn/SiO2) and/or as a high surface area carrier (e.g., SnO2 or Sn containing mixed metal oxides). Also, RuCu binary compositions were found to be active after a reduction pretreatment with hydrogen.  相似文献   

20.
An extensive study of Fischer-Tropsch synthesis on nanostructure supports with high surface area such as nanostructure γ-alumina, single wall carbon nanotubes (SWNTs), and the hybrid of SWNTs/nanostructure γ-alumina has been investigated. The nanostructure γ-alumina was promoted with lanthanum to obtain better performance of catalyst and 15 wt% cobalt loading was the basis of our investigation. Fischer-Tropsch synthesis was performed in a fixed bed reactor under different reaction conditions (220–240 °C, 15–25 bar, H2/CO ratio of 2, GHSV of 900–1400) in order to study the effects of temperature, pressure and gas hourly space velocity (GHSV) changes on hydrocarbon selectivity and catalyst activity. The catalysts were extensively characterized by different methods including X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), inductively coupled plasma (ICP), hydrogen (H2) chemisorption and temperature-programmed reduction (TPR). The results showed that the yield of hybrid supported catalyst (55.4%) is higher than that of nanostructure γ-alumina supported catalyst (55.0%) and lower than that of SWNTs supported cobalt catalyst (71.0%). The hybrid supported catalyst showed higher reduction degree and dispersion of cobalt particles. The temperature, pressure and GHSV effects on hybrid supported catalyst were studied and results showed that higher pressure favors the chain growth and temperature increase leads to the increases in methane selectivity and CO conversion. Higher hydrocarbon selectivity and CO conversion showed positive relationship with increasing GHSV while lower hydrocarbon selectivity diminishes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号