首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Here, we report the use of a capillary electrophoretic method with laser-induced fluorescence detection to evaluate hydroxyl radicals produced by respiring mitochondria. The probe, hydroxyphenylfluorescein (HPF), is separated from the product, fluorescein, in under 5 min with zeptomole and attomole limits of detection for fluorescein and HPF, respectively. Purification of the probe with a C-18 SPE column is necessary to reduce the fluorescein impurity in the probe stock solution from 0.4 % to less than 0.001 %. HPF was responsive to hydroxyl radicals produced by isolated mitochondria from L6 cells, and this signal was blunted when DMSO was added to scavenge hydroxyl radicals and when carbonyl cyanide m-chlorophenylhydrazone was added to depolarize the mitochondria. The method was used to compare hydroxyl radical levels in mitochondria isolated from brown adipose tissue of lean and obese mice. Mitochondria from obese mice produced significantly more hydroxyl radicals than those from lean mice.
Figure
Caption for figure abstract: Mitochondria are the main source of cellular reactive oxygen species. While all are of interest, the specific detection of hydroxyl radicals can be achieved with the fluorescent probe HPF. MEKC-LIF is used to separate the probe HPF from its product, fluorescein. This was demonstrated by treating enriched mitochondria fractions from L6 cells with HPF. Electropherograms show an increase in fluorescein peak area when mitochondria are stimulated with 100 μM Fe2+.  相似文献   

2.
Singlet oxygen (1O2) is the primary oxidant generated in photodynamic therapy (PDT) protocols involving sensitizers resulting in type II reactions. 1O2 can give rise to additional reactive oxygen species (ROS) such as the hydroxyl radical (?OH). The current study was designed to assess 3′‐p‐(aminophenyl) fluorescein (APF) and 3′‐p‐(hydroxyphenyl) fluorescein (HPF) as probes for the detection of 1O2 and ?OH under conditions relevant to PDT. Cell‐free studies indicated that both APF and HPF were converted to fluorescent products following exposure to 1O2 generated by irradiation of a water‐soluble photosensitizing agent (TPPS) and that APF was 35‐fold more sensitive than HPF. Using the 1O2 probe singlet oxygen sensor green (SOSG) we confirmed that 1 mm NaN3 quenched 1O2‐induced APF/HPF fluorescence, while 1% DMSO had no effect. APF and HPF also yielded a fluorescent product upon interacting with ?OH generated from H2O2 via the Fenton reaction in a cell‐free system. DMSO quenched the fluorogenic interaction between APF/HPF and ?OH at doses as low as 0.02%. Although NaN3 was expected to quench ?OH‐induced APF/HPF fluorescence, co‐incubating NaN3 with APF or HPF in the presence of ?OH markedly enhanced fluorescence. Cultured L1210 cells that had been photosensitized with benzoporphyhrin derivative exhibited APF fluorescence immediately following irradiation. Approximately 50% of the cellular fluorescence could be suppressed by inclusion of either DMSO or the iron‐chelator desferroxamine. Combining the latter two agents did not enhance suppression. We conclude that APF can be used to monitor the formation of both 1O2 and ?OH in cells subjected to PDT if studies are performed in the presence and absence of DMSO, respectively. That portion of the fluorescence quenched by DMSO will represent the contribution of ?OH. This procedure could represent a useful means for evaluating formation of both ROS in the context of PDT.  相似文献   

3.
Xiao Y  Ye Z  Wang G  Yuan J 《Inorganic chemistry》2012,51(5):2940-2946
Reactive oxygen species (ROS) are important mediators in a variety of pathological events, but the oxidative stress owing to excessive generation of ROS is implicated in many human diseases. In this work, we designed and synthesized a novel dual-functional chelating ligand, [4'-(p-aminophenoxy)methylene-2,2':6',2'-terpyridine-6,6'-diyl]bis(methylenenitrilo)tetrakis(acetic acid) (AMTTA), that can strongly coordinate with both Eu(3+) and Tb(3+) in aqueous solutions for the recognition and time-gated luminescence detection of highly ROS (hROS), hydroxyl radical ((?)OH), and hypochlorite (ClO(-)). The complexes AMTTA-Ln(3+) (Ln = Eu and Tb) are almost nonluminescent because of the photoinduced electron transfer from the electron-rich aminophenyl group to the terpyridine-Ln(3+) moiety but can rapidly react with hROS to afford highly luminescent complexes (4'-hydroxymethyl-2,2':6',2'-terpyridine-6,6'-diyl)bis(methylenenitrilo)tetrakis(acetate)-Ln(3+) (HTTA-Ln(3+)). Interestingly, when the AMTTA-Eu(3+)/Tb(3+) mixture (AMTTA/Eu(3+)/Tb(3+) = 2/1/1) was reacted with hROS, the intensity ratio of its Tb(3+) emission at 540 nm to its Eu(3+) emission at 610 nm, I(540)/I(610), showed a ratiometric response toward hROS, and the dose-dependent increase of the ratio displayed a double-exponential correlation to the concentration of hROS. This unique luminescence response allowed the AMTTA-Eu(3+)/Tb(3+) mixture to be used as a ratiometric probe for the time-gated luminescence detection of hROS.  相似文献   

4.
本实验发现Co  相似文献   

5.
X F Yang  X Q Guo 《The Analyst》2001,126(10):1800-1804
A new method for the determination of hydroxyl radicals is proposed. The method is based on the use of a hybrid molecule consisting of a fluorescent chromophore, anthracene, and a nitroxide radical. In the hybrid molecule, the nitroxide quenches the fluorescence of anthracene strongly. The reaction of hydroxyl radicals with dimethyl sulfoxide generates quantitatively methyl radicals, which then combine with the nitroxide moiety of the hybrid molecules to result in an increase in the fluorescence intensity. The fluorescence increase is proportional to the concentration of hydroxyl radicals. The proposed method is capable of detecting hydroxyl radicals generated in the Fenton system. It is a simple and sensitive technique for the determination of hydroxyl radicals.  相似文献   

6.
羟自由基在电极电解过程中的形成规律   总被引:8,自引:0,他引:8  
对钛基二氧化铅电极电解过程中产生的·OH进行了定量研究.结果表明,钛基二氧化铅电极在适当的电解条件下可以产生大量的自由基,碱性和高频条件下产生的自由基比酸性和低频条件下产生的自由基多.苯酚降解实验结果说明了其极强的氧化性能,在废水的深度处理方面有着极其广阔的应用前景.  相似文献   

7.
本文研究Fenton反应产生的·OH与Ce3+作用后Ce3+被氧化生成无荧光的Ce4+,通过测定Ce3+的荧光强度的下降可间接测定所产生的羟自由基,并结合流动注射技术,确定了体系最佳实验条件。同时测定抗氧化剂清除羟自由基的实验证明,该体系可作为在线筛选抗氧化剂以及在线测定羟自由基的方法。  相似文献   

8.
Reactive oxygen species (ROS),such as superoxide radical (O2-)and hydroxyl radical (OH), are thought to be involved in the action of many toxins and several human diseases. Among the various radicals,the hydroxyl radical is presumed to play a central role due to its strong activity. Several methods have been developed to detect hydroxyl radicals. Among them, one of the most commonly used is ESR method. Because of a high-cost instrument, this method is not suitable for routine analysis. Another method is aromatic hydroxylation. Though this method is highly sensitive, the multiple hydroxylation products make the quantitative detection of hydroxyl radical complex.  相似文献   

9.
Photoexcitation of fluorophores commonly used for biological imaging applications generates reactive oxygen species (ROS) which can cause bleaching of the fluorophore and damage to the biological system under investigation. In this study, we show that singlet oxygen contributes relatively little to Cy5 and ATTO 647N photobleaching at low concentrations in aqueous solution. We also show that Cy5 generates significantly less ROS when covalently linked to the protective agents, cyclooctatetraene (COT), nitrobenzyl alcohol (NBA) or Trolox. Such fluorophores exhibit enhanced photostability both in bulk solutions and in single‐molecule fluorescence measurements. While the fluorophores ATTO 647N and ATTO 655 showed greater photostability than Cy5 and the protective–agent‐linked Cy5 derivatives investigated here, both of ATTO 647N and ATTO 655 generated singlet oxygen and hydroxyl radicals at relatively rapid rates, suggesting that they may be substantially more phototoxic than Cy5 and its derivatives.  相似文献   

10.
This article is aimed at studying on the roles of the hydroxyl radicals, photo-generated holes, and oxygen in the photocatalytic degradation of humic acid (HA) in acid and alkaline conditions. The results indicate that hydroxyl radicals?? scavenger alone can inhibit the photocatalytic degradation process completely in alkaline condition, which implies that photo-generated holes cannot directly degrade the organic matter in alkaline condition. Moreover, the reaction sites between hydroxyl radicals and HA is on the TiO2 surface in acid condition. But in alkaline condition, hydroxyl radicals diffuse and react with HA in the solution. The generation of hydroxyl radicals almost stops and the photocatalytic degradation is inhibited seriously without oxygen, which illustrates that oxygen plays an important role in the photocatalytic degradation of HA.  相似文献   

11.
荧光素钠乙醇溶液的光谱研究   总被引:2,自引:0,他引:2  
1 前言荧光素钠作为黄绿光区的一种激光染料,由于它具有高的激光能量转换效率而引起人们的关注.这种染料的发光波长及发光效率都与其溶液的pH值直接有关。我们在前文中详细地研究了这种染料溶液的激光能量转换效率与其pH值的依赖关系,论述了染料分子在不同pH值的溶液中存在着多种不同的变型,并且讨论了其发光效率与pH值存在依赖关系的原因。本文进一步研究该染料在不同pH值的溶液中的吸收光谱、荧光光谱和荧光寿命以探  相似文献   

12.
The dicyanomethylenedihydrofuran (DCDHF) class of single-molecule fluorophores contains an amine donor and a dicyanomethylenedihydrofuran acceptor linked by a conjugated unit (benzene, naphthalene, or styrene). Molecules in this class have a number of useful properties in addition to those usually required for single-molecule studies (such as high fluorescence quantum yield and photostability), including second-order optical nonlinearity, large ground-state dipole moment, and sensitivity to local environment. Moreover, most DCDHF molecules have amphiphilic structures, with a polar dicyanomethylenedihydrofuran headgroup and nonpolar hydrocarbon tails on the amine or furan ring, and can be used as fluorescent lipid analogues for live cell imaging. Here we demonstrate that individual molecules of several different DCDHF lipid analogues can be observed diffusing in the plasma membrane of Chinese hamster ovary cells. The photophysical and diffusive behaviors of the DCDHF lipid analogues in membranes are described and are found to be competitive with the well-known lipid probe N-(6-tetramethylrhodaminethiocarbamoyl)-1,2-dihexadecanoyl-sn-glycero-3-phosphoethanolamine.  相似文献   

13.
Reactive oxygen species (ROS) can be used not only as a therapeutic agent for chemodynamic therapy (CDT), but also as a stimulus to activate release of antitumor drugs, achieving enhanced efficacy through the combination of CDT and chemotherapy. Here we report a pH/ROS dual‐responsive nanomedicine consisting of β‐lapachone (Lap), a pH‐responsive polymer, and a ROS‐responsive polyprodrug. In the intracellular acidic environment, the nanomedicine can realize pH‐triggered disassembly. The released Lap can efficiently generate hydrogen peroxide, which will be further converted into highly toxic hydroxyl radicals via the Fenton reaction. Subsequently, through ROS‐induced cleavage of thioketal linker, doxorubicin is released from the polyprodrug. In vivo results indicate that the cascade of ROS generation and antitumor‐drug release can effectively inhibit tumor growth. This design of nanomedicine with cascade reactions offers a promising strategy to enhance antitumor efficacy.  相似文献   

14.
The existence of free radicals in iodine-based oscillatory systems has been debated for some time. Recently, we have reported the presence of reactive oxygen species (ROS) in the iodide-peroxide system in acidic medium, which is common to all iodine--based oscillatory systems ( J. Phys. Chem. A 2011 , 115 , 2247--2249 ). In this work, the goal was to identify the ROS produced in this system using an EPR spin trap which can distinguish between hydroxyl (HO(?)) and hydroperoxyl (HOO(?)) radicals. The formation of the hydroperoxyl radical was observed and a possible explanation for the low EPR signal of hydroxyl radical was proposed.  相似文献   

15.
We report the solvatochromic, viscosity-sensitive, and single-molecule photophysics of the fluorophores DCDHF-N-6 and DCDHF-A-6. These molecules are members of the dicyanomethylenedihydrofuran (DCDHF) class of single-molecule emitters that contain an amine electron donor and a DCDHF acceptor linked by a conjugated unit; DCDHF-N-6 and DCDHF-A-6 have naphthalene- and anthracene-conjugated linkers, respectively. These molecules maintain the beneficial photophysics of the phenylene-linked DCDHF (i.e., photostability, emission wavelength dependence on solvent polarity, and quantum yield sensitivity to solvent viscosity), yet offer absorption and emission at longer wavelengths that are more appropriate for cellular imaging. We demonstrate that these new fluorophores are less photolabile in an aqueous environment than several other commonly used dyes (rhodamine 6G, Texas Red, and fluorescein). Finally, we image single copies of the acene DCDHFs diffusing in the plasma membrane of living cells.  相似文献   

16.
EPR spectroscopy was applied to obtain qualitative and quantitative information on the radicals produced in disinfection processes of wastewater for agricultural reuse. The DEPMPO spin trap was employed to detect hydroxyl and carbon-centered short living radicals in two different peracetic acid solutions and a hydrogen peroxide solution used for water disinfection either in the absence or in the presence of UV-C irradiation. Moreover, three different kinds of water (wastewater, demineralized water, distilled water) were analysed in order to assess the contribution of Fenton reactions to the radical production. The spectroscopic results were discussed in relation to the efficiency of the different oxidizing agents and UV irradiation in wastewater disinfection evaluated as Escherichia Coli, Faecal and Total Coliforms inactivation.  相似文献   

17.
In situ DNA oxidative damage by electrochemically generated hydroxyl free radicals has been directly demonstrated on a boron-doped diamond electrode. The DNA-electrochemical biosensor incorporates immobilized double-stranded DNA (dsDNA) as molecular recognition element on the electrode surface, and measures in situ specific binding processes with dsDNA, as it is a complementary tool for the study of bimolecular interaction mechanisms of compounds binding to DNA and enabling the screening and evaluation of the effect caused to DNA by radicals and health hazardous compounds. Oxidants, particularly reactive oxygen species (ROS), play an important role in dsDNA oxidative damage which is strongly related to mutagenesis, carcinogenesis, autoimmune inflammatory, and neurodegenerative diseases. The hydroxyl radical is considered the main contributing ROS to endogenous oxidation of cellular dsDNA causing double-stranded and single-stranded breaks, free bases, and 8-oxoguanine occurrence. The dsDNA-electrochemical biosensor was used to study the interaction between dsDNA immobilized on a boron-doped diamond electrode surface and in situ electrochemically generate hydroxyl radicals. Non-denaturing agarose gel-electrophoresis of the dsDNA films on the electrode surface after interaction with the electrochemically generated hydroxyl radicals clearly showed the occurrence of in situ dsDNA oxidative damage. The importance of the dsDNA-electrochemical biosensor in the evaluation of the dsDNA-hydroxyl radical interactions is clearly demonstrated.  相似文献   

18.
一种表征羟基自由基的新型荧光探针   总被引:13,自引:0,他引:13  
表征羟基自由基 (· OH)的方法主要有电子自旋共振法[1] 和芳环羟基化法[2 ,3] 两大类 .电子自旋共振法灵敏度不高 ,且仪器设备昂贵 ,不适于常规分析 .芳环羟基化法操作较简单 ,灵敏度高 ,但芳环羟基化的产物往往不止一种 ,使得定量测定变得复杂 .其它方法如高效液相色谱法[4 ] ,化学发光法[5] 等也有报道 .顺磁性氮氧化合物能有效地清除自由基 [6 ,7] ,同时也是一种芳烃单重激发态的有效猝灭剂 [8,9] .当顺磁性氮氧化合物与荧光分子共价结合 ,所形成的荧光分子 -氮氧自由基复合物 (即自旋标记荧光分子 )仍保留对自由基反应的活性 ,但由于…  相似文献   

19.
Hydrogen atoms form two kinds of adducts with thymine (oxidizing and reducing). Redox reactions of these two kinds, popularly known as 5-hydrogenated-6-thyminyl (reducing) and 6-hydrogenated-5-thyminyl (oxidizing), were investigated where ferric ions (oxidizing) and ferrous ions (reducing) were used as the corresponding redox partners. A steady-state gamma radiolytic system was chosen where hydroxyl radicals were scavenged using t-butyl alcohol in acidic (pH 1.8) solution. It is inferred that the redox potential of oxidizing hydrogenated thyminyl radicals lies between 0.77 and 1.4 V vs. NHE. The reducing hydrogenated thyminyl radical has a redox value less than 0.8 V because it efficiently undergoes electron transfer reaction with Fe(III). A probable range of redox values for hydroxyl adduct of thymine is included for comparison.  相似文献   

20.
An investigation of the photochemical properties of collagen Type I in acetic acid solution was carried out using nanosecond laser irradiation. The transient spectra of collagen solution excited at 266 nm show two bands. One of them with maximum at 295 nm and the second one with maximum at 400 nm. The peak at 400 nm is assigned to tyrosyl radicals. The first peak of the transient absorption spectra at 295 nm is probably due to photoionisation producing collagen radical cation. The transient for collagen solution in acetic acid at 640 nm was not observed. It is evidence that there is no hydrated electron in the irradiated collagen solution. The reactions of hydrated electrons and (*)OH radicals with collagen have been studied by pulse radiolysis. In the absorption spectra of products resulting from the reaction of collagen with e(aq)(-) no characteristic maximum absorption in UV and visible light region has been observed. In the absorption spectra of products resulting from the reaction of the hydroxyl radicals with collagen two bands have been observed. The first one at 320 nm and the second one at 405 nm. Reaction of (*)OH radicals with tyrosine residues in collagen chains gives rise to Tyr phenoxyl radicals (absorption at 400 nm).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号