首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the context of the PELskin project, a homogenized model to study flows over and inside poroelastic media has been developed. It allows to simulate the fluid–structure interaction between a fluid and an extremely dense poroelastic medium, without limitations on physical and geometrical parameters such as the density of the elastic material, the porosity or the number of periodic microstructures which constitute the medium. The model is applied to the case of the flow in a channel driven by an oscillating pressure gradient, with half the channel covered by a carpet of flexible, densely packed fibers, connected to each other to allow for the propagation of the deformation field.  相似文献   

2.
A new mathematical model for the macroscopic behavior of a material composed of a poroelastic solid embedding a Newtonian fluid network phase (also referred to as vascularized poroelastic material), with fluid transport between them, is derived via asymptotic homogenization. The typical distance between the vessels/channels (microscale) is much smaller than the average size of a whole domain (macroscale). The homogeneous and isotropic Biot’s equation (in the quasi-static case and in absence of volume forces) for the poroelastic phase and the Stokes’ problem for the fluid network are coupled through a fluid-structure interaction problem which accounts for fluid transport between the two phases; the latter is driven by the pressure difference between the two compartments. The averaging process results in a new system of partial differential equations that formally reads as a double poroelastic, globally mass conserving, model, together with a new constitutive relationship for the whole material which encodes the role of both pore and fluid network pressures. The mathematical model describes the mutual interplay among fluid filling the pores, flow in the network, transport between compartments, and linear elastic deformation of the (potentially compressible) elastic matrix comprising the poroelastic phase. Assuming periodicity at the microscale level, the model is computationally feasible, as it holds on the macroscale only (where the microstructure is smoothed out), and encodes geometrical information on the microvessels in its coefficients, which are to be computed solving classical periodic cell problems. Recently developed double porosity models are recovered when deformations of the elastic matrix are neglected. The new model is relevant to a wide range of applications, such as fluid in porous, fractured rocks, blood transport in vascularized, deformable tumors, and interactions across different hierarchical levels of porosity in the bone.  相似文献   

3.
The objective of this work is to develop an analytical homogenization method to estimate the effective mechanical properties of fluid-filled porous media with periodic microstructure. The method is based on the equivalent inclusion concept of homogenization applied earlier for solid–solid mixture. It is assumed that porous media are described by the poroelastic constitutive law developed by Biot where porosity is a material parameter. By solving the governing equations of poroelasticity in Fourier transformed domain, the relation between periodic strain and eigenstrain in porous media is established. This relation is subsequently used in an average consistency condition involving both solid and fluid phase stresses and strains. The geometry of the porous microstructure is captured in the g-integral. This homogenization method can also be applied to estimate the equivalent properties of solid–fluid mixture where a pure solid and fluid can be modeled by assuming very low and high porosity, respectively. Several examples are considered to establish this new method by comparing with other existing analytical and numerical methods of homogenization. As an application, poroelastic properties of cortical bone fibril are estimated and compared with previously computed values.  相似文献   

4.
The paper presents a unified mathematical approach for describing the dynamic stressstrain state of mechanical structures from heterogeneous materials possessing a double coupled system of pore channels filled with fluid. New dynamic equations describing the oscillations of poroelastic systems based on the developed model of a continuous medium with additional degrees of freedom in the form of various pressures of the components constituting the liquid phase of the material are obtained. The equations and the method of obtaining them have a greater degree of generalization than those encountered in the literature. Theoretical results can be used to study the propagation of vibrations in fractured geological rocks saturated with liquid, to develop technical systems of new structural materials with a porous structure, for the analysis of micro streams of fluid in the hierarchical system of microporous bone tissue.  相似文献   

5.
We consider acoustic waves in fluid-saturated periodic media with dual porosity. At the mesoscopic level, the fluid motion is governed by the Darcy flow model extended by inertia terms and by the mass conservation equation. In this study, assuming the porous skeleton is rigid, the aim is to distinguish the effects of the strong heterogeneity in the permeability coefficients. Using the asymptotic homogenization method we derive macroscopic equations and obtain the dispersion relationship for harmonic waves. The double porosity gives rise to an extra homogenized coefficient of dynamic compressibility which is not obtained in the upscaled single porosity model. Both the single and double porosity models are compared using an example illustrating wave propagation in layered media.  相似文献   

6.
A canonical scattering problem is that of a plane wave incident upon a periodic layered medium. Our aim here is to replace the periodic medium by a homogenized counterpart and then to investigate whether this captures the reflection and transmission behaviour accurately at potentially high frequencies.We develop a model based upon high frequency homogenization and compare the reflection coefficients and full fields with the exact solution. For some material properties it is shown that the asymptotic behaviour of the dispersion curves are locally linear near critical frequencies and that low frequency behaviour is replicated at these critical, high, frequencies. The homogenization approach accurately replaces the periodic medium and the precise manner in which this is achieved then opens the way to future numerical implementation of this technique to scattering problems.  相似文献   

7.
We consider colloidal dynamics and single-phase fluid flow within a saturated porous medium in two space dimensions. A new approach in modeling pore clogging and porosity changes on the macroscopic scale is presented. Starting from the pore scale, transport of colloids is modeled by the Nernst?CPlanck equations. Here, interaction with the porous matrix due to (non-)DLVO forces is included as an additional transport mechanism. Fluid flow is described by incompressible Stokes equations with interaction energy as forcing term. Attachment and detachment processes are modeled by a surface reaction rate. The evolution of the underlying microstructure is captured by a level set function. The crucial point in completing this model is to set up appropriate boundary conditions on the evolving solid?Cliquid interface. Their derivation is based on mass conservation. As a result of an averaging procedure by periodic homogenization in a level set framework, on the macroscale we obtain Darcy??s law and a modified averaged convection?Cdiffusion equation with effective coefficients due to the evolving microstructure. These equations are supplemented by microscopic cell problems. Time- and space-dependent averaged coefficient functions explicitly contain information of the underlying geometry and also information of the interaction potential. The theoretical results are complemented by numerical computations of the averaged coefficients and simulations of a heterogeneous multiscale scenario. Here, we consider a radially symmetric setting, i.e., in particular we assume a locally periodic geometry consisting of circular grains. We focus on the interplay between attachment and detachment reaction, colloidal interaction forces, and the evolving microstructure. Our model contributes to the understanding of the effects and processes leading to porosity changes and pore clogging from a theoretical point of view.  相似文献   

8.
In this paper, we develop a model of a homogenized fluid-saturated deformable porous medium. To account for the double porosity the Biot model is considered at the mesoscale with a scale-dependent permeability in compartments representing the second-level porosity. This model is treated by the homogenization procedure based on the asymptotic analysis of periodic “microstructure”. When passing to the limit, auxiliary microscopic problems are introduced, which provide the corrector basis functions that are needed to compute the effective material parameters. The macroscopic problem describes the deformation-induced Darcy flow in the primary porosities whereas the microflow in the double porosity is responsible for the fading memory effects via the macroscopic poro-visco-elastic constitutive law. For the homogenization procedure, we use the periodic unfolding method. We discuss also the stress and flow recovery at multiple scales characterizing the heterogeneous material. The model is proposed as a theoretical basis to describe compact bone behavior on multiple scales.  相似文献   

9.
The articular cartilage (AC) can be seen as a biphasic poroelastic material. The cartilage deformation under compression mainly leads to an interstitial fluid flow in the porous solid phase. In this paper, an analytical poroelastic model for the AC under laboratorial mechanical testing is developed. The solutions of interstitial fluid pressure and velocity are obtained. The results show the following facts. (i) Both the pressure and fluid velocity amplitudes are proportional to the strain loading amplitude. (ii) Both the amplitudes of pore fluid pressure and velocity in the AC depend more on the loading amplitude than on the frequency. Thus, in order to obtain the considerable fluid stimulus for the AC cell responses, the most effective way is to increase the loading amplitude rather than the frequency. (iii) Both the interstitial fluid pressure and velocity are strongly affected by permeability variations. This model can be used in experimental tests of the parameters of AC or other poroelastic materials, and in research of mechanotransduction and injury mechanism involved interstitial fluid flow.  相似文献   

10.
Many natural and technological processes are associated with deformation and fracture of saturated or being saturated poroelastic media. Among such processes one can mention fluid soaking through a dam, fluid inflow to the cracks of hydraulic fracture, polishing using porous materials and special fluids, flow in catalytic pellets. All these processes are accompanied by deformation and fracture of a matrix with fluid flow. The effects at the interface porous body–fluid are essential for the processes.The specific features of deformation of poroelastic media with low structural strength are considered in this paper. The compressibility of the matrix skeleton is larger as compared to the compressibility of the saturating fluid in such media.It is shown that the oozing of the fluid at the surface of the poroelastic medium occurs in the consolidated flow regime under the action of `fluid piston' like loads if the structural strength of the medium is low. This result is obtained for both plane (deformation of a layer or halfinfinite medium) and centrally symmetric (deformation of a sphere) problems.  相似文献   

11.
A linear dynamic model of fully saturated porous media with local (either microscopic or mesoscopic) heterogeneities is developed within the context of Biot’s theory of poroelasticity. Viscoporoelastic behavior associated with local fluid flow is characterized by the notion of the dynamic compatibility condition on the interface between the solid and the fluid. Complex, frequency-dependent material parameters characterizing the viscoporoelasticity are derived. The complex properties can be obtained through determining the quasi-static poroelastic parameters, the properties of individual constituents, and the relaxation time of the dynamic compatibility condition on the interface. Relationships among various quasi-static poroelastic parameters are developed. It is shown that local fluid flow mechanism is significant only in the porous media with local heterogeneities. The relaxation time of the compatibility condition on the interface depends upon the details of local structure of porous media that control local fluid pressure diffusion. The new model is used to describe the velocity dispersion and attenuation in fully saturated porous media. The proposed model provides a theoretical framework to simulate the acoustical behavior of fully saturated porous media over a wide range of frequencies without making any explicit assumption about the structure of local heterogeneities.  相似文献   

12.
Based on the dynamic poroelastic theory of Biot, dynamic responses of a track system and poroelastic half-space soil medium subjected to moving train passages are investigated by the substructure method. The whole system is divided into two separately formulated substructures, the track and the ground, and the rail is described by introducing the Green function for an infinitely long Euler beam subjected to the action of moving axle loads of the train and the reactions of the sleeper. Sleepers are represented by a continuous mass and the effect of the ballast is considered by introducing the Cosserat model for granular medium. Using the double Fourier transform, the governing equations of motion are then solved analytically in the frequency-wave-number domain. The time domain responses are evaluated by the inverse Fourier transform computation for a certain train speed. Computed results show that the shape of the rail displacements of the elastic and poroelastic soil medium are in good agreement with each other of the low train velocity, but the result of the poroelastic soil medium is significantly different to that of the elastic soil medium for the high train velocity which is higher than Rayleigh-wave speed in the soil. The influence of the soil intrinsic permeability on soil responses is discussed with great care in both time domain and frequency domain. The dynamic responses of the soil medium are considerably affected by the fluid phase as well as the load velocity.  相似文献   

13.
高岳  王涛  严子铭  柳占立  庄茁 《力学学报》2022,54(8):2248-2268
本文研究了在页岩气高效开采中钻井完井和水力压裂缝网改造的关键力学问题. 提出了页岩多孔弹性介质的本构、强度和断裂韧性的各向异性模型, 指出了微观均匀假设与微观各向同性假设在页岩多孔弹性本构中的简化应用, 给出了横观各向同性多孔弹性岩石材料常数的简化测量方案, 讨论了基于修正的能量最大释放率下裂纹扩展的弱面模型, 提出了裂纹扩展禁止区现象. 阐述了钻井完井过程中的多孔弹性介质井壁稳定性和剪切破坏的时间效应, 提供了多种破坏模式下井壁许可压力范围的显式表达式, 并与传统广义胡克定律得到结果对比. 给出了水平井水力压裂缝网改造技术, 包含水力压裂的大物模实验技术、水力压裂过程中基于扩展有限元与有限体积法的耦合流体/固体/裂缝扩展的数值模拟方法, 并与黏性主导的水力压裂解析解结果对比, 针对性分析了川渝地区的水力压裂施工现场实践应用问题. 建立了基于数据驱动的页岩气采收率预测方法, 指出了机器学习中极限梯度爬升法在小数据集情况下的有效性.   相似文献   

14.
In this paper the problem of wave propagation over an adjoining-type of composite submerged poroelastic breakwater with different materials is investigated theoretically. A new analytical solution for describing the dynamic response of wave interaction with poroelastic structures is presented. A set of simultaneous equations is developed and numerically solved in order to produce a general solution for each region subject to matching boundary conditions. The present paper focuses on the changes of influence parameters such as different component widths of the composite breakwater, permeability coefficients, composite materials and configurations of breakwater on wave variations.  相似文献   

15.
We undertake a formal derivation of a linear poro-thermo-elastic system within the framework of quasi-static deformation. This work is based upon the well-known derivation of the quasi-static poroelastic equations (also known as the Biot consolidation model) by homogenization of the fluid-structure interaction at the microscale. We now include energy, which is coupled to the fluid-structure model by using linear thermoelasticity, with the full system transformed to a Lagrangian coordinate system. The resulting upscaled system is similar to the linear poroelastic equations, but with an added conservation of energy equation, fully coupled to the momentum and mass conservation equations. In the end, we obtain a system of equations on the macroscale accounting for the effects of mechanical deformation, heat transfer, and fluid flow within a fully saturated porous material, wherein the coefficients can be explicitly defined in terms of the microstructure of the material. For the heat transfer we consider two different scaling regimes, one where the Péclet number is small, and another where it is unity. We also establish the symmetry and positivity for the homogenized coefficients.  相似文献   

16.
The problem of the dynamic response of a fully saturated poroelastic soil stratum on bedrock subjected to a moving load is studied by using the theory of Mei and Foda under conditions of plane strain. The applied load is considered to be the sum of a large number of harmonics with varying frequency in the form of a Fourier expansion. The method of solution considers the total field to be approximated by the superposition of an elastodynamic problem with modified elastic constants and mass density for the whole domain and a diffusion problem for the pore fluid pressure confined to a boundary layer near the free surface of the medium. Both problems are solved analytically in the frequency domain. The effects of the shear modulus, permeability and porosity of the soil medium and the velocity of the moving load on the dynamic response of the soil layer are numerically evaluated and compared with those obtained by the exact solution of the problem. It is concluded that for fine poroelastic materials, the accuracy of the present method against the exact one is excellent.  相似文献   

17.
The problem of two circular wellbores of different size in a poroelastic medium is considered in the present work. The constitutive behaviour of the poroelastic medium is assumed to comply with the classical Biot model for isotropic porous materials infiltrated by compressible fluid. The wellbores are assumed infinitely long and the fluid flow is taken stationary, thus making it possible to perform a plane strain analysis. Owing to the geometrical layout of the system, bipolar cylindrical coordinates have been adopted. Three different sets of BCs on the pressure field and on the fluid flux have been considered, founding the corresponding forms of the pressure field. Based on Helmholtz representation, a displacement potential has been introduced, and the corresponding stress field in the poroelastic medium has been assessed. However, such a solution does not satisfy the BCs at the edges of the wells. Then, an auxiliary stress function, which allows accomplishing the BCs, is introduced, leading to the complete solution of the problem. The cases of two coaxial wellbores (eccentric annulus), a single hole bored in a poroelastic half plane and two intersecting holes have been considered also. The proposed approach allows evaluating the pore pressure and the stress and strain fields in the system varying the amplitude of the wells and the physical parameters of the porous material. In particular, the evaluation of the peak values of the stress components around the circular boreholes plays a key role in a variety of engineering contexts, with particular reference to the stability analysis of wellbores and tunnels and failure of vascular vessels in biological tissues.  相似文献   

18.
This paper presents a method, based on measurement of material dynamic-complex stiffness, of determining the coefficients appearing in Biot's equations for poroelastic materials. This method is relatively simple to employ and has several self-checking features. Results are presented and compared with theoretical predictions for material systems based on polyurethane foam, wool felt and sand solid phases with fluid phases of water, air and silicone fluid.  相似文献   

19.
成层饱和介质平面波斜入射问题的一维化时域方法   总被引:1,自引:0,他引:1  
地震波斜入射下自由场的输入是大型结构抗震分析中亟待解决的问题之一,尤其是成层饱和多孔介质自由场问题,由于问题的复杂性,目前研究甚少. 本文基于Biot提出的饱和多孔介质动力方程,建立了一种新的求解平面波斜入射下基岩上覆饱和多孔介质成层场地自由场分析的一维化时域计算方法. 该方法首先根据Snell定律将饱和多孔介质二维空间问题转化为一维时域问题,通过对深度方向的有限元离散,得到饱和多孔介质波动问题的一维化有限元方程,然后采用单相弹性介质精确人工边界条件模拟基岩半空间的波动辐射和输入特征,通过考虑基岩与饱和多孔介质间透水或不透水边界条件以及不同饱和多孔介质交界面边界条件,形成基岩上覆成层饱和介质系统的整体有限元方程,最后采用中心差分法与Newmark平均加速度近似格式相结合的方法对时间进行离散,得到节点的动力时程的显式表达. 典型场地的地震反应分析表明,本文方法的计算结果与传递矩阵法结合傅里叶变换的计算结果完全吻合,证明了其有效性.   相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号