首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An asymptotic solution is obtained for stress and pore pressure fields near the tip of a crack steadily propagating in an elastic–plastic fluid-saturated porous material displaying linear isotropic hardening. Quasi-static crack growth is considered under plane strain and Mode I loading conditions. In particular, the effective stress is assumed to obey the Drucker–Prager yield condition with associative or non-associative flow-rule and linear isotropic hardening is adopted. Both permeable and impermeable crack faces are considered. As for the problem of crack propagation in poroelastic media, the behavior is asymptotically drained at the crack-tip. Plastic dilatancy is observed to have a strong effect on the distribution and intensity of pore water pressure and to increase its flux towards the crack-tip.  相似文献   

2.
In the framework of the theory of mixtures, the governing equations of motion of a fluid-saturated poroelastic medium including microstructural (for both the solid and the fluid) and micro-inertia (for the solid) effects are derived. This is accomplished by appropriately combining the conservation of mass and linear momentum equations with the constitutive equations for both the solid and the fluid constituents. The solid is assumed to be gradient elastic, that is, its stress tensor depends on the strain and the second gradient of strain tensor. The fluid is assumed to have an analogous behavior, that is, its stress tensor depends on the pressure and the second gradient of pressure. A micro-inertia term in the form of the second gradient of the acceleration of the solid is also included in the equations of motion. The equations of motion in three dimensions are seven equations with seven unknowns, the six displacement components for the solid and the fluid and the pore-fluid pressure. Because of the microstructural effects, the order of these equations is two degrees higher than in the classical case. Application of the divergence and the rot operations on these equations enable one to study the propagation of plane harmonic waves in the infinitely extended medium separately in the form of dilatational and rotational dispersive waves. The effects of the microstructure and the micro-inertia on the dispersion curves are determined and discussed.  相似文献   

3.
Many natural and technological processes are associated with deformation and fracture of saturated or being saturated poroelastic media. Among such processes one can mention fluid soaking through a dam, fluid inflow to the cracks of hydraulic fracture, polishing using porous materials and special fluids, flow in catalytic pellets. All these processes are accompanied by deformation and fracture of a matrix with fluid flow. The effects at the interface porous body–fluid are essential for the processes.The specific features of deformation of poroelastic media with low structural strength are considered in this paper. The compressibility of the matrix skeleton is larger as compared to the compressibility of the saturating fluid in such media.It is shown that the oozing of the fluid at the surface of the poroelastic medium occurs in the consolidated flow regime under the action of `fluid piston' like loads if the structural strength of the medium is low. This result is obtained for both plane (deformation of a layer or halfinfinite medium) and centrally symmetric (deformation of a sphere) problems.  相似文献   

4.
The present work deals with the possibility of propagation of torsional surface wave in fluid saturated poroelastic layer lying over nonhomogeneous elastic half space. Both the media are assumed to be under compressive initial stress. The half space has two types of inhomogeneity, viz; hyperbolic and quadratic. The dispersion equation for torsional wave in porous layer has been derived and observed that the presence of fluid in pores increases the velocity of the torsional surface wave but the phase velocity diminishes due to the presence of compressive initial stress in the porous layer. It is also observed that the velocity of the torsional surface wave increases due to the increase of initial stress in inhomogeneous half space. The inhomogeneity factor due to quadratic and hyperbolic variations in rigidity, density and initial stress of the medium decreases the phase velocity as it increases.  相似文献   

5.
The problem of the dynamic response of a fully saturated poroelastic soil stratum on bedrock subjected to a moving load is studied by using the theory of Mei and Foda under conditions of plane strain. The applied load is considered to be the sum of a large number of harmonics with varying frequency in the form of a Fourier expansion. The method of solution considers the total field to be approximated by the superposition of an elastodynamic problem with modified elastic constants and mass density for the whole domain and a diffusion problem for the pore fluid pressure confined to a boundary layer near the free surface of the medium. Both problems are solved analytically in the frequency domain. The effects of the shear modulus, permeability and porosity of the soil medium and the velocity of the moving load on the dynamic response of the soil layer are numerically evaluated and compared with those obtained by the exact solution of the problem. It is concluded that for fine poroelastic materials, the accuracy of the present method against the exact one is excellent.  相似文献   

6.
Poroelasticity is a theory that quantifies the time-dependent mechanical behavior of a fluid-saturated porous medium induced by the interaction between matrix deformation and interstitial fluid flow. Based on this theory, we present an analytical solution of interstitial fluid pressure in poroelastic materials under uniaxial cyclic loading. The solution contains transient and steady-state responses. Both responses depend on two dimensionless parameters: the dimensionless frequency Ω that stands for the ratio of the characteristic time of the fluid pressure relaxation to that of applied forces, and the dimensionless stress coefficient H governing the solid-fluid coupling behavior in poroelastic materials. When the phase shift between the applied cyclic loading and the corresponding fluid pressure evolution in steady-state is pronounced, the transient response is comparable in magnitude to the steady-state one and an increase in the rate of change of fluid pressure is observed immediately after loading. The transient response of fluid pressure may have a significant effect on the mechanical behavior of poroelastic materials in various fields.  相似文献   

7.
In the context of the PELskin project, a homogenized model to study flows over and inside poroelastic media has been developed. It allows to simulate the fluid–structure interaction between a fluid and an extremely dense poroelastic medium, without limitations on physical and geometrical parameters such as the density of the elastic material, the porosity or the number of periodic microstructures which constitute the medium. The model is applied to the case of the flow in a channel driven by an oscillating pressure gradient, with half the channel covered by a carpet of flexible, densely packed fibers, connected to each other to allow for the propagation of the deformation field.  相似文献   

8.
In this paper, the thermo-poroelasticity theory is used to investigate the quasi-static response of temperatures, pore pressure, stress, displacement, and fluid flux around a cylindrical borehole subjected to impact thermal and mechanical loadings in an infinite saturated poroelastic medium. It has been reported in literatures that coupled flow known as thermo-osmosis by which flux is driven by temperature gradient, can significantly change the fluid flux in clay, argillaceous and many other porous materials whose permeability coefficients are very small. This study presents a mathematical model to investigate the coupled effect of thermo-osmosis in saturated porous medium. The energy balance equations presented here fulfill local thermal non-equilibrium condition (LTNE) which is different from the local thermal equilibrium transfer theory, accounting for that temperatures of solid and fluid phases are not the same and governed by different heat transfer equations. Analytical solutions of temperatures, pore pressure, stress, displacement, and fluid flux are obtained in Laplace transform space. Numerical results for a typical clay are used to investigate the effect of thermo-osmosis. The effects of LTNE on temperatures, pore pressure, and stress are also studied in this paper.  相似文献   

9.
The objective of this work is to develop an analytical homogenization method to estimate the effective mechanical properties of fluid-filled porous media with periodic microstructure. The method is based on the equivalent inclusion concept of homogenization applied earlier for solid–solid mixture. It is assumed that porous media are described by the poroelastic constitutive law developed by Biot where porosity is a material parameter. By solving the governing equations of poroelasticity in Fourier transformed domain, the relation between periodic strain and eigenstrain in porous media is established. This relation is subsequently used in an average consistency condition involving both solid and fluid phase stresses and strains. The geometry of the porous microstructure is captured in the g-integral. This homogenization method can also be applied to estimate the equivalent properties of solid–fluid mixture where a pure solid and fluid can be modeled by assuming very low and high porosity, respectively. Several examples are considered to establish this new method by comparing with other existing analytical and numerical methods of homogenization. As an application, poroelastic properties of cortical bone fibril are estimated and compared with previously computed values.  相似文献   

10.
11.
本文基于热局部非平衡(LTNE)条件和加权平均温度概念,并假设孔隙流体由溶质和溶剂两组元组成,对页岩(饱和多孔介质),推导给出了一种LTNE条件下的化学-热-弹性模型,同时讨论了耦合方程组的解耦求解问题.作为模型的应用,考虑无限大平面含一圆形孔的情况,研究了冷/热对流以及溶质摩尔分数突变边界条件下圆孔附近的孔隙压力和化-热应力问题,用Laplace变换得到了平面轴对称情况下有关力学变量的表达式.数值分析了圆孔边界上冷/热对流的Biot数和溶质摩尔分数改变量对圆孔附近孔隙压力和化-热应力的影响.结果表明:在Biot数为中等值(1~5)范围内,LTNE效应是非常明显的;化学作用对孔隙压力和固相应力的影响不可忽视.  相似文献   

12.
In the paper, two theoretical poroelastic osteon models are presented to compare their poroelastic behaviors, one is the hollow osteon model (Haversian fluid is neglected) and the other is the osteon model with Haversian fluid considered. They both have the same two types of impermeable exterior boundary conditions, one is elastic restraint and the other is displacement constrained, which can be used for analyzing other experiments performed on similarly shaped poroelastic specimens. The obtained analytical pressure and velocity solutions demonstrate the effects of the loading factors and the material parameters, which may have a significant stimulus to the mechanotransduction of bone remodeling signals. Model comparisons indicate: (1) The Haversian fluid can enhance the whole osteonal fluid pressure and velocity fields. (2) In the hollow model, the key loading factor governing the poroelastic behavior of the osteon is strain rate, while in the model with Haversian fluid considered, the strain rate governs only the velocity. (3) The pressure amplitude is proportional to the loading frequency in the hollow model, while in the model with Haversian fluid considered, the loading frequency has little effect on the pressure amplitude.  相似文献   

13.
The effect of yield stress on the flow characteristics of a Casson fluid in a homogeneous porous medium bounded by a circular tube is investigated by employing the Brinkman model to account for the Darcy resistance offered by the porous medium. The non-linear coupled implicit system of differential equations governing the flow is first transformed into suitable integral equations and are solved numerically. Analytical solution is obtained for a Newtonian fluid in the case of constant permeability, and the numerical solution is verified with that of the analytic solution. The effect of yield stress of the fluid and permeability of the porous medium on shear stress and velocity distributions, plug flow radius and flow rate are examined. The minimum pressure gradient required to start the flow is found to be independent of the permeability of the porous medium and is equal to the yield stress of the fluid.  相似文献   

14.
In connection with the exploitation of petroleum deposits, the article discusses the equilibrium of a porous medium with a crack under conditions of plane deformation, with the steady-state filtration of a liquid injected into the porous medium through a crack. It is assumed that the crack, which has initial zero dimensions, can become wider and longer with a rise in the pressure. The displacement of the sides of the crack is determined on the basis of the theory of elasticity, taking account of the deformation properties of a saturated porous medium. The stress and the displacement are expressed in terms of two analytical Muskhelishvili functions and the complex filtration potential. A change in the volume of the porous medium leads to a discontinuity of the displacements at the feed contour, and to distortion in the filtration region. For a circular stratum, the dimensions of the crack and the mass flow rate of the liquid are determined in the first approximation. The region of values of the pressure in which there exists a stable equilibrium state of the open crack and a steady-state flow of the liquid is found.  相似文献   

15.
The present work is devoted to the determination of the macroscopic poroelastic properties of anisotropic elastic porous materials saturated by a fluid under pressure. It makes use of the theoretical results provided by Withers [Withers, P.J., 1989. The determination of the elastic field of an ellipsoidal inclusion in a transversely isotropic medium, and its relevance to composite materials. Philosophical Magazine A 59 (4), 759–781.] for the problem of an ellipsoidal inclusion embedded in a transversely isotropic elastic medium. The particular case of a spherical inclusion is very important for rock-like composites such as argillite and shales. The implementation of these results in a micromechanical theory of poroelasticity allows to quantify the effects of the solid matrix anisotropy and of pore space on the effective poromechanical properties. Closed form expressions of Biot tensor and of Biot modulus are presented as well as numerical applications for anisotropic shales.  相似文献   

16.
The articular cartilage (AC) can be seen as a biphasic poroelastic material. The cartilage deformation under compression mainly leads to an interstitial fluid flow in the porous solid phase. In this paper, an analytical poroelastic model for the AC under laboratorial mechanical testing is developed. The solutions of interstitial fluid pressure and velocity are obtained. The results show the following facts. (i) Both the pressure and fluid velocity amplitudes are proportional to the strain loading amplitude. (ii) Both the amplitudes of pore fluid pressure and velocity in the AC depend more on the loading amplitude than on the frequency. Thus, in order to obtain the considerable fluid stimulus for the AC cell responses, the most effective way is to increase the loading amplitude rather than the frequency. (iii) Both the interstitial fluid pressure and velocity are strongly affected by permeability variations. This model can be used in experimental tests of the parameters of AC or other poroelastic materials, and in research of mechanotransduction and injury mechanism involved interstitial fluid flow.  相似文献   

17.
Microporous media, i.e., porous media made of pores with a nanometer size, are important for a variety of applications, for instance for sequestration of carbon dioxide in coal, or for storage of hydrogen in metal-organic frameworks. In a pore of nanometer size, fluid molecules are not in their bulk state anymore since they interact with the atoms of the solid: they are said to be in an adsorbed state. For such microporous media, conventional poromechanics breaks down.In this work we derive poroelastic constitutive equations which are valid for a generic porous medium, i.e., even for a porous medium with pores of nanometer size. The complete determination of the poromechanical behavior of a microporous medium requires knowing how the amount of fluid adsorbed depends on both the fluid bulk pressure and the strain of the medium. The derived constitutive equations are validated with the help of molecular simulations on one-dimensional microporous media. Even when a microporous medium behaves linearly in the absence of any fluid (i.e., its bulk modulus does not depend on strain), we show that fluid adsorption can induce non-linear behavior (i.e., its drained bulk modulus can then depend significantly on strain). We also show that adsorption can lead to an apparent Biot coefficient of the microporous medium greater than unity or smaller than zero.The poromechanical response of a microporous medium to adsorption significantly depends on the pore size distribution. Indeed, the commensurability (i.e., the ratio of the size of the pores to that of the fluid molecules) proves to play a major role. For a one-dimensional model of micropores with a variety of pore sizes, molecular simulations show that the amount of adsorbed fluid depends linearly on the strain of the medium. We derive linearized constitutive equations which are valid when such a linear dependence of the adsorbed amount of fluid on the strain is observed.As an application, the case of methane and coal is considered. Molecular simulations of an adsorption of methane on a microporous realistic model for coal are performed with a flexible solid skeleton. The applicability of the set of linearized constitutive equations to this case is discussed and the results are shown to be consistent with swelling data measured during a classical adsorption experiment.  相似文献   

18.
The paper deals with an application of the plane strain analysis in a stochastic three-dimensional soil medium. In a framework of random elasticity theory, the geostatical state of stresses and the problem of a unit force acting in a statistically homogeneous half-space are considered. Only the modulus of elasticity is considered to be random and is modelled as a three-dimensional (3-D) homogeneous random field. As the result of imposed constrains due to the plane strain assumption the additional body and surface forces are induced. In order to determine them, additional equations must be introduced. The equations in a form of constrain relations are proposed in this paper. These equations are also valid for a case of uniformly distributed external loading.First, the two-dimensional (2-D) problem and its reduction to the uni-axial strain state, for the gravity forces and uniform, unlimited surface loading is considered. Then, it is generalised into a 2-D schematization of the 3-D state. Next, the problem of a unit force acting in a statistically homogeneous half-space is considered. For a 3-D state of stress and strain the resulting stresses are compared with those for a 2-D state. These stresses for the multidimensional state of strain and stress are presented as a sum of two components. The first one reflects plane strain state stresses and is given in a form of a 3-D random field. This term allows for incorporating a spatial, 3-D soil variability into a two-dimensional analysis. The second component can be treated as a correction term and it represents the longitudinal influence of a 3-D analysis.Some numerical results are presented in this paper. The proposed method can be regarded as a framework for further research aiming at application to a variety of geotechnical problems, for which the plane strain state is assumed.  相似文献   

19.
This paper presents an analytical solution for the response of a poroelastic medium around a laterally loaded rigid cylinder using Biot’s consolidation theory. A plane-strain section of the cylinder-porous medium system is considered and the problem is formulated in polar coordinates. Expressions for the pore fluid pressure, stresses and displacements in the Laplace domain are derived analytically. The inverse of the Laplace transform is evaluated numerically using an efficient scheme. Curves showing decay of the pore fluid pressure with time, the corresponding change in mean effective stress and the variation of displacement, are plotted in non-dimensional form.  相似文献   

20.
An analytic solution is presented for stresses induced in an elastic and isotropic disk by an eccentric press-fitted circular inclusion. The disk is also subject to uniform normal stress applied at its outer border. The inclusion is assumed to be of the same material as the annular disk and both elements are in a plane stress or plane strain state. A frictionless contact condition is assumed between the two members. The solution is obtained by using the general expression for a biharmonic stress function in bipolar coordinates. The results show that the maximum of the von Mises effective stress due to the inclusion interference occurs in the ligament for large eccentricity, but it deviates from the symmetry axis for small eccentricity. Moreover, along the border of the circular inclusion the hoop stress locally coincides with the contact pressure, in agreement with a similar classical result valid for a half plane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号