首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
The electronic band structure at the Zn(1-x)Mg(x)O/Cu(In(0.7)Ga(0.3))Se(2) interface was investigated for its potential application in Cd-free Cu(In,Ga)Se(2) thin film solar cells. Zn(1-x)Mg(x)O thin films with various Mg contents were grown by atomic layer deposition on Cu(In(0.7)Ga(0.3))Se(2) absorbers, which were deposited by the co-evaporation of Cu, In, Ga, and Se elemental sources. The electron emissions from the valence band and core levels were measured by a depth profile technique using X-ray and ultraviolet photoelectron spectroscopy. The valence band maximum positions are around 3.17 eV for both Zn(0.9)Mg(0.1)O and Zn(0.8)Mg(0.2)O films, while the valence band maximum value for CIGS is 0.48 eV. As a result, the valence band offset value between the bulk Zn(1-x)Mg(x)O (x = 0.1 and x = 0.2) region and the bulk CIGS region was 2.69 eV. The valence band offset value at the Zn(1-x)Mg(x)O/CIGS interface was found to be 2.55 eV after considering a small band bending in the interface region. The bandgap energy of Zn(1-x)Mg(x)O films increased from 3.25 to 3.76 eV as the Mg content increased from 0% to 25%. The combination of the valence band offset values and the bandgap energy of Zn(1-x)Mg(x)O films results in the flat (0 eV) and cliff (-0.23 eV) conduction band alignments at the Zn(0.8)Mg(0.2)O/Cu(In(0.7)Ga(0.3))Se(2) and Zn(0.9)Mg(0.1)O/Cu(In(0.7)Ga(0.3))Se(2) interfaces, respectively. The experimental results suggest that the bandgap energy of Zn(1-x)Mg(x)O films is the main factor that determines the conduction band offset at the Zn(1-x)Mg(x)O/Cu(In(0.7)Ga(0.3))Se(2) interface. Based on these results, we conclude that a Zn(1-x)Mg(x)O film with a relatively high bandgap energy is necessary to create a suitable conduction band offset at the Zn(1-x)Mg(x)O/CIGS interface to obtain a robust heterojunction. Also, ALD Zn(1-x)Mg(x)O films can be considered as a promising alternative buffer material to replace the toxic CdS for environmental safety.  相似文献   

2.
To determine the applicability of LaCo(1-x)Ni(x)O(3) in a conductive material for electrical wiring, the dependence of the electronic transport property on the Ni content is investigated via Hall effect measurements, Rietveld analyses, and band-structure calculations. Ni doping (50 mol %) into the Co sites realizes a high electrical conductivity of 1.9 × 10(3) S/cm, which is an unexpectedly high value for a LaCo(1-x)Ni(x)O(3) system, at room temperature due to the high carrier concentration of 2.2 × 10(22) cm(-3) and the small effective mass of 0.1 m(e). In addition, the high electrical conductivity is maintained from room temperature to 900 °C; that is, the temperature coefficient of the conductivity is smaller than that of standard metals. Thus, the results indicate that LaCo(0.5)Ni(0.5)O(3) is suitable as a conductive material for electrical wiring at high temperatures in air.  相似文献   

3.
通过高温固相反应合成了N掺杂的SrTiO3和(SrTiO3)1-x(SrTaO2N)x固溶体,对其进行了X射线衍射,紫外可见吸收光谱,X射线光电子能谱分析和比表面积的表征。随x由0增大至0.4,固溶体带隙变窄,由3.2eV降至2.3eV,吸收光谱由紫外光区扩展到可见光区。在甲醇溶液(50mLCH3OH+220mLH2O)中进行了光催化分解水产生氢气的反应,在硝酸银溶液(270mL,0.01mol·L-1)中进行了光催化分解水产生氧气的反应,在可见光(λ420nm)照射下,实现了可见光响应的光催化分解水。  相似文献   

4.
The Zn(1-x)Mn(x)O (x = 0, 0.16, and 0.25) thin films were grown on fused quartz substrates by reactive magnetron cosputtering. X-ray-diffraction measurement revealed that all the films were single phase and had wurtzite structure with c-axis orientation. As Mn concentration increased in the Zn(1-x)Mn(x)O films, the c-axis lattice constant and band-gap energy increased gradually. In Raman-scattering studies, an additional Mn-related vibration mode appeared at 520 cm(-1). E(2H) phonon line of Zn(1-x)Mn(x)O alloy was broadened asymmetrically and redshifted as a result of microscopic structural disorder induced by Mn(2+) random substitution. The Zn(0.84)Mn(0.16)O film exhibited a ferromagnetic characteristic with a Curie temperature of approximately 62 K. However, with increasing Mn concentration to 25 at. %, ferromagnetism disappeared due to the enhanced antiferromagnetic superexchange interactions between neighboring Mn(2+) ions.  相似文献   

5.
Raman microscopy has been used to study the molecular structure of a synthetic goudeyite (YCu(6)(AsO(4))(3)(OH)(6) x 3H(2)O). These types of minerals have a porous framework similar to that of zeolites with a structure based upon (A(3+))(1-x)(A(2+))(x)Cu(6)(OH)(6)(AsO(4))(3-x)(AsO(3)OH)(x). Two sets of AsO stretching vibrations were found and assigned to the vibrational modes of AsO(4) and HAsO(4) units. Two Raman bands are observed in the region 885-915 and 867-870 cm(-1) region and are assigned to the AsO stretching vibrations of (HAsO(4))(2-) and (H(2)AsO(4))(-) units. The position of the bands indicates a C(2v) symmetry of the (H(2)AsO(4))(-) anion. Two bands are found at around 800 and 835 cm(-1) and are assigned to the stretching vibrations of uncomplexed (AsO(4))(3-) units. Bands are observed at around 435, 403 and 395 cm(-1) and are assigned to the nu(2) bending modes of the HAsO(4) (434 and 400 cm(-1)) and the AsO(4) groups (324 cm(-1)).  相似文献   

6.
The development of analytical tools and procedures for process control is a prerequisite for the integration of high permittivity and/or ferroelectric materials in CMOS devices. The thickness and composition of perovskite oxide films were determined by wavelength dispersive X-ray fluorescence analysis (XRF) with special emphasis on the ratio of the group-II elements to the Ti content, and a precision of 0.5% was achieved for a typical film thickness of 20-30 nm. Secondary ion mass spectrometry (SIMS) and sputtered neutrals mass spectrometry (SNMS) was used for depth profiling to determine film homogeneity and elemental interdiffusion at hetero-interfaces. Examples are given for Ba(x)Sr(1-x)TiO(3) and SrTiO(x) thin films which were grown in a prototype MOCVD production tool. No interdiffusion was observed for films grown at 600 degrees C on Pt electrodes in contrast to films grown directly on Si.  相似文献   

7.
The ion conductivity of zirconium hydrogen monothiophosphate (Zr(HPO(3)S)(2)x1.5H(2)O) has been measured by impedance spectroscopy. The measured value of proton conductivity is 3 x 10(-5) S/cm at 298 K. Conductivity was shown to decrease with increasing temperature due to a dehydration process. Above 450 K, the conductivity is likely governed by proton transport in the anhydrous phase Zr(HPO(3)S)(2). The activation energies of proton conductivity were measured to be 18 +/- 2 kJ/mol for Zr(HPO(3)S)(2)x1.5H(2)O and 60 +/- 3 kJ/mol for the anhydrous compound. The kinetics of ion exchange was studied with the use of potentiometric titration for several ion pairs, H(+)/Na(+), H(+)/Zn(2+), and Na(+)/Zn(2+) in Zr(HPO(3)S)(2)x1.5H(2)O. The diffusion coefficient values for H(+)/Na(+) ion exchange in Zr(HPO(3)S)(2)x1.5H(2)O are lower than those reported in alpha-zirconium phosphate. At the same time, the mobility of zinc ions in Zr(HPO(3)S)(2)x1.5H(2)O is higher than sodium ion mobility. The ion exchange H(+)/Zn(2+) is accompanied by the slow hydrolysis of the initial compound. In all cases, the powdered solids were evaluated by powder X-ray diffraction, and particle sizes were controlled by grinding and sieving the powders.  相似文献   

8.
The interaction of 20 wt% 12-tungstophosphoric acid with Ce(x)Zr(1-x)O(2) solid solutions has been studied by PXRD, FTIR, FT-Raman, H(2)-TPR, NH(3)-TPD, diffuse reflectance UV-vis-NIR, and (31)P MAS NMR techniques. The study indicates that the Keggin anions are attached to Lewis metal ion centres and anion vacancies on Ce(x)Zr(1-x)O(2) supports through WO terminal bonds. The Keggin units at the interface are chemically perturbed as indicated by non-intrinsic IR bands observed at 958 cm(-1) (WO(ter) bond), and 1052, 1102 cm(-1) (PO bond). NH(3)-TPD shows that the Keggin anions fixed to Lewis sites and/or oxygen ion vacancies decrease the ammonia uptake on Ce(x)Zr(1-x)O(2) solid solutions. H(2)-TPR shows modified redox behaviour of Ce(x)Zr(1-x)O(2) solid solutions due to the simultaneous reduction of ceria, decomposition of Keggin anions and the reduction of WO(3). The broadening of (31)P MAS NMR and DR-UV-vis-NIR spectra demonstrate the existence of chemical interactions between the Keggin anions and Ce(x)Zr(1-x)O(2) supports.  相似文献   

9.
N-doped SrTiO3 and (SrTiO3)1-x.(LaTiO2N)x samples were prepared by the thermal ammonolysis method. The photocatalytic activities of the samples were investigated in a water suspension system. Aqueous methanol solution (50 mL CH3OH + 220 mL H2O) for H2 evolution and aqueous silver nitrate solution (270 mL, 0.01 mol L(-1)) for O2 evolution were used as sacrificial reagents. The oxynitrides showed photocatalytic activities under visible light irradiation. The maximum rates of photocatalytic hydrogen and oxygen evolution under visible light irradiation (lambda > 420 nm) were 10 and 8 micromol h(-1), respectively. The samples were characterized by X-ray diffractometry, UV-Vis spectrophotometry, Fourier transform infrared spectrometry, and laser Raman spectroscopy. The unit cell edge length of (SrTiO3)1-x.(LaTiO2N)x increased linearly and their band gaps reduced from 3.18 to 2.04 eV with increasing x from 0 to 0.30. Moreover, the calculation results of (SrTiO3)0.75.(LaTiO2N)0.25 by density functional theory suggested that the band gap narrowing of the solid solutions came from the hybridization of N2p and O2p orbital. The band positions of the solid solutions were further investigated by Mott-Schottky and the onset potential method. The results suggested that the conduction band of the solid solution was lowered, which led to decrement of the hydrogen evolution rate.  相似文献   

10.
We report the effect of donor-doped perovskite-type BaCeO(3) on the chemical stability in CO(2) and boiling H(2)O and electrical transport properties in various gas atmospheres that include ambient air, N(2), H(2), and wet and dry H(2). Formation of perovskite-like BaCe(1-x)Nb(x)O(3±δ) and BaCe(0.9-x)Zr(x)Nb(0.1)O(3±δ) (x = 0.1; 0.2) was confirmed using powder X-ray diffraction (XRD) and electron diffraction (ED). The lattice constant was found to decrease with increasing Nb in BaCe(1-x)Nb(x)O(3±δ), which is consistent with Shannon's ionic radius trend. Like BaCeO(3), BaCe(1-x)Nb(x)O(3±δ) was found to be chemically unstable in 50% CO(2) at 700 °C, while Zr doping for Ce improves the structural stability of BaCe(1-x)Nb(x)O(3±δ). AC impedance spectroscopy was used to estimate electrical conductivity, and it was found to vary with the atmospheric conditions and showed mixed ionic and electronic conduction in H(2)-containing atmosphere. Arrhenius-like behavior was observed for BaCe(0.9-x)Zr(x)Nb(0.1)O(3±δ) at 400-700 °C, while Zr-free BaCe(1-x)Nb(x)O(3±δ) exhibits non-Arrhenius behavior at the same temperature range. Among the perovskite-type oxides investigated in the present work, BaCe(0.8)Zr(0.1)Nb(0.1)O(3±δ) showed the highest bulk electrical conductivity of 1.3 × 10(-3) S cm(-1) in wet H(2) at 500 °C, which is comparable to CO(2) and H(2)O unstable high-temperature Y-doped BaCeO(3) proton conductors.  相似文献   

11.
Influence of the vacancy concentration on the Li conductivity of the (Li(1-x)Na(x))(0.2)La(0.6)TiO(3) and (Li(1-x)Na(x)(0.5)La(0.5)TiO(3) perovskite series, with 0 < or = x < 1, has been investigated by neutron diffraction (ND), impedance spectroscopy (IS), nuclear magnetic resonance (NMR), and Monte Carlo simulations. In both series, Li(+) ions occupy unit cell faces, but Na(+) ions are located at A sites of the perovskite. From this fact, the amount of vacant A sites that participate in Li conductivity is given by the expression n(v) = [Li] + square, where square is the nominal vacancy concentration. Substitution of Li by Na decreases the amount of vacancies, reducing drastically the Li conductivity when n(v) approaches the percolation threshold of the perovskite conduction network. In disordered (Li(1-x)Na(x))(0.5)La(0.5)TiO(3) perovskites, the percolation threshold is 0.31; however, in ordered (Li(1-x)Na(x))(0.2)La(0.6)TiO(3) perovskites, this parameter changes to 0.26. Near the percolation threshold, the amount of mobile Li species deduced by (7)Li NMR spectroscopy is lower than that derived from structural formulas but higher than deduced from dc conductivity measurements. Conductivity values have been explained by Monte Carlo simulations, which assume a random walk for Li ions in the conduction network of the perovskite. In these simulations, distribution of vacancies conforms to structural models deduced from ND experiments.  相似文献   

12.
Zinc tin oxide (Zn(1-x)Sn(x)O(y)) has been proposed as an alternative buffer layer material to the toxic, and light narrow-bandgap CdS layer in CuIn(1-x),Ga(x)Se(2) thin film solar cell modules. In this present study, synchrotron-based soft X-ray absorption and emission spectroscopies have been employed to probe the densities of states of intrinsic ZnO, Zn(1-x)Sn(x)O(y) and SnO(x) thin films grown by atomic layer deposition. A distinct variation in the bandgap is observed with increasing Sn concentration, which has been confirmed independently by combined ellipsometry-reflectometry measurements. These data correlate directly to the open circuit potentials of corresponding solar cells, indicating that the buffer layer composition is associated with a modification of the band discontinuity at the CIGS interface. Resonantly excited emission spectra, which express the admixture of unoccupied O 2p with Zn 3d, 4s, and 4p states, reveal a strong suppression in the hybridization between the O 2p conduction band and the Zn 3d valence band with increasing Sn concentration.  相似文献   

13.
A novel molecular based proton-electron mixed conductor, (H3BBIM(+))(TCNQ)(Cl(-))(0.5)(H(2)O) (1), where H3BBIM(+) is 2-(2-1H-benzimidazolyl)-1H-benzimidazolium and TCNQ is 7,7,8,8-tetracyano-p-quinodimethane, was synthesized. The salt exhibited peculiar phase transitions as a result of proton-electron coupling phenomena within the crystal. Salt 1 is composed of a closed-shell H3BBIM(+) cation and an open-shell TCNQ anion radical, and was obtained by electrocrystallization in a buffered CH(3)CN solution. Crystal 1 was constructed from the segregated uniform stacks of H3BBIM(+) and TCNQ. The regular stack of partially electron-transferred TCNQ(-0.5) provided a one-dimensional electron-conducting column. Between the regular H3BBIM(+) columns, a channel-like sequence of holes was formed at the side-by-side space that is filled with disordered Cl(-) ions and H(2)O molecules, and which offer a proton-conducting path. The electrical conductivity at room temperature (10 S cm(-1)) was greater by a magnitude of four than the protonic conductivity (1x10(-3) S cm(-1)). Electronic conduction changed from metallic (T>250 K) to semiconducting (250>T>100 K), then insulating (T<100 K). Protonic conductivity was observed above 200 K. The continuous metal-semiconductor transition at 250 K is caused by the formation of the Cl(-) superstructure, whereas the disappearance of protonic conductivity at 200 K is related to the rearrangement of the [Cl(-)-(H(2)O)(2)] sublattice within the channel. The magnetic susceptibility continuously shifted from Pauli paramagnetism (T>250 K) to the one-dimensional linear Heisenberg antiferromagnetic chain (T<250 K). Lattice dimerization in regular TCNQ columns was confirmed by the appearance of vibrational a(g) mode at low temperatures. The strong localization of conduction electrons on each TCNQ dimer caused a Mott transition at 100 K. The melting and freezing of the [Cl(-)-(H(2)O)(2)] sublattice within the channel was correlated to the conduction electrons on the TCNQ stack and the protonic conductivity.  相似文献   

14.
15.
The systematic study of band-filling control for four kinds of organic conductors with various kinds of ground states has succeeded. (1) By partial substitution of (GaCl(4))(-) by (MCl(4))(2-) [M = Co, Zn] in the anion blocking layer of lambda-ET(2)(GaCl(4))(-) [ET = bis(ethylenedithio)tetrathiafulvalene], single crystals of lambda-ET(2)(GaCl(4))(-)(1-x)(MCl(4))(2-)(x) [x = 0.0, 0.05, 0.06] have been obtained. The resistivity at room temperature decreases from 3 Omega cm (x = 0.0) to 0.1 Omega cm (x = 0.06) by doping to the antiferromagnet with an effective half-filled band (x = 0.0). (2) Another 2:1 (donor/anion) salt, delta'-ET(2)(GaCl(4))(-), which is a spin gap material, has been doped as delta'-ET(2)(GaCl(4))(-)(1-x)(MCl(4))(2-)(x) [x = 0.05, 0.14]. The resistivity is lowered from 10 Omega cm (x = 0.0) to 0.3 Omega cm (x = 0.14). For both 2:1 salts, the semiconducting behaviors have transferred to relatively conductive semiconducting ones by doping. (3) As for alpha-type 3:1 salts, the parent material is in a charge-ordering state such as alpha-(ET(+)ET(+)ET(0))(CoCl(4))(2-)(TCE), where the charge-ordered donors are dispersed in the two-dimensional conducting layer. Although the calculation of alpha-ET(3)(CoCl(4))(2-)(TCE) shows a band-insulating nature, and the crystal structure analysis indicates that this material is in a charge-ordering state, the metallic behavior down to 165 K has been observed. With doping of (GaCl(4))(-) to the alpha-system, isostructural alpha-ET(3)(CoCl(4))(2-)(1-x)(GaCl(4))(-)(x)(TCE) [x = 0.54, 0.57, 0.62] have been afforded, where the pattern of the horizontal stripe-type charge ordering changes with an increase of x. (4) By doping (GaCl(4))(-) to the 3:2 gapless band insulator which is isostructural to beta'-ET(3)(MCl(4))(2)(2-) [M = Zn, Mn], the obtained beta'-ET(3)(CoCl(4))(2-)(2-x)(GaCl(4))(-)(x) [x = 0.66, 0.88] shows metallic behavior down to 100 and 140 K, respectively. They are the first metallic states in organic conductors by band-filling control of the gapless band insulator. These systematic studies of band-filling control suggest that the doping to the gapless band insulator with a pseudo-1/2-filled band is most effective.  相似文献   

16.
A novel family of metal oxides with a chemical formula of Sr(2)Ce(1-x)Pr(x)O(4) (x = 0, 0.2, 0.5, 0.8, and 1) was developed as mixed oxide ion and electronic conductors for solid oxide fuel cells (SOFCs). All of the investigated samples were synthesized by the ceramic method at 1000 °C in air and characterized by powder X-ray diffraction (PXRD), selected area electron diffraction (SAED), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and electrochemical impedance spectroscopy (EIS). Ex-situ PXRD reveals that the Sr(2)PbO(4)-type Sr(2)CeO(4) decomposes readily into a mixture of perovskite-type SrCeO(3) and rock-salt-type SrO at 1400 °C in air. Surprisingly, the decomposed products are converted back to the original Sr(2)PbO(4)-type Sr(2)CeO(4) phase at 800 °C in air, as confirmed by in-situ PXRD. Thermal decomposition is highly suppressed in Sr(2)Ce(1-x)Pr(x)O(4) compounds for Pr > 0, suggesting that Pr improves the thermal stability of the compounds. Rietveld analysis of PXRD and SAED supported that both Pr and Ce ions are located on the 2a site in Pbam (space group no. 55). The electrical transport mechanism could be correlated to the reduction of Pr and/or Ce ions and subsequent loss of oxide ions at elevated temperatures, as shown by TGA and in-situ PXRD. Conductivity increases with Pr content in Sr(2)Ce(1-x)Pr(x)O(4). The highest total conductivity of 1.24 × 10(-1) S cm(-1) was observed for Sr(2)Ce(0.2)Pr(0.8)O(4) at 663 °C in air.  相似文献   

17.
溶胶-凝胶法制备高取向Bi4Ti3O12/SrTiO3(100)薄膜   总被引:1,自引:0,他引:1  
Bi4Ti3O12具有良好的铁电、电光等性能山、特别是Bi4Ti3O12薄膜很适合作永久性存储材料,也可用于电光器件问.在微电子学、光电子学、集成光学、集成铁电学等领域均有广泛开发和应用前景,国外已用溅射法、激光沉积法制备出c轴取向Bi。Ti3Ol。薄膜【’,\山东大学用MOCVD法制  相似文献   

18.
The physical and photocatalytic properties of a novel solid solution between GaN and ZnO, (Ga(1-x)Zn(x))(N(1-x)O(x)), are investigated. Nitridation of a mixture of Ga(2)O(3) and ZnO at 1123 K for 5-30 h under NH(3) flow results in the formation of a (Ga(1-x)Zn(x))(N(1-x)O(x)) solid solution with x = 0.05-0.22. With increasing nitridation time, the zinc and oxygen concentrations decrease due to reduction of ZnO and volatilization of zinc, and the crystallinity and band gap energy of the product increase. The highest activity for overall water splitting is obtained for (Ga(1-x)Zn(x))(N(1-x)O(x)) with x = 0.12 after nitridation for 15 h. The crystallinity of the catalyst is also found to increase with increasing the ratio of ZnO to Ga(2)O(3) in the starting material, resulting in an increase in activity.  相似文献   

19.
The synthesis and magnetic properties of 13 new homo- and heterometallic Co(II) complexes containing the artificial amino acid 2-amino-isobutyric acid, aibH, are reported: [Co(II)(4)(aib)(3)(aibH)(3)(NO(3))](NO(3))(4)·2.8CH(3)OH·0.2H(2)O (1·2.8CH(3)OH·0.2H(2)O), {Na(2)[Co(II)(2)(aib)(2)(N(3))(4)(CH(3)OH)(4)]}(n) (2), [Co(II)(6)La(III)(aib)(6)(OH)(3)(NO(3))(2)(H(2)O)(4)(CH(3)CN)(2)]·0.5[La(NO(3))(6)]·0.75(ClO(4))·1.75(NO(3))·3.2CH(3)CN·5.9H(2)O (3·3.2CH(3)CN·5.9H(2)O), [Co(II)(6)Pr(III)(aib)(6)(OH)(3)(NO(3))(3)(CH(3)CN)(6)]·[Pr(NO(3))(5)]·0.41[Pr(NO(3))(3)(ClO(4))(0.5)(H(2)O)(1.5)]·0.59[Co(NO(3))(3)(H(2)O)]·0.2(ClO(4))·0.25H(2)O (4·0.25H(2)O), [Co(II)(6)Nd(III)(aib)(6)(OH)(3)(NO(3))(2.8)(CH(3)OH)(4.7)(H(2)O)(1.5)]·2.7(ClO(4))·0.5(NO(3))·2.26CH(3)OH·0.24H(2)O (5·2.26CH(3)OH·0.24H(2)O), [Co(II)(6)Sm(III)(aib)(6)(OH)(3)(NO(3))(3)(CH(3)CN)(6)]·[Sm(NO(3))(5)]·0.44[Sm(NO(3))(3)(ClO(4))(0.5)(H(2)O)(1.5)]·0.56[Co(NO(3))(3)(H(2)O)]·0.22(ClO(4))·0.3H(2)O (6·0.3H(2)O), [Co(II)(6)Eu(III)(aib)(6)(OH)(3)(NO(3))(3)(CH(3)OH)(4.87)(H(2)O)(1.13)](ClO(4))(2.5)(NO(3))(0.5)·2.43CH(3)OH·0.92H(2)O (7·2.43CH(3)OH·0.92H(2)O), [Co(II)(6)Gd(III)(aib)(6)(OH)(3)(NO(3))(2.9)(CH(3)OH)(4.9)(H(2)O)(1.2)]·2.6(ClO(4))·0.5(NO(3))·2.58CH(3)OH·0.47H(2)O (8·2.58CH(3)OH·0.47H(2)O), [Co(II)(6)Tb(III)(aib)(6)(OH)(3)(NO(3))(3)(CH(3)CN)(6)]·[Tb(NO(3))(5)]·0.034[Tb(NO(3))(3)(ClO(4))(0.5)(H(2)O)(0.5)]·0.656[Co(NO(3))(3)(H(2)O)]·0.343(ClO(4))·0.3H(2)O (9·0.3H(2)O), [Co(II)(6)Dy(III)(aib)(6)(OH)(3)(NO(3))(2.9)(CH(3)OH)(4.92)(H(2)O)(1.18)](ClO(4))(2.6)(NO(3))(0.5)·2.5CH(3)OH·0.5H(2)O (10·2.5CH(3)OH·0.5H(2)O), [Co(II)(6)Ho(III)(aib)(6)(OH)(3)(NO(3))(3)(CH(3)CN)(6)]·0.27[Ho(NO(3))(3)(ClO(4))(0.35)(H(2)O)(0.15)]·0.656[Co(NO(3))(3)(H(2)O)]·0.171(ClO(4)) (11), [Co(II)(6)Er(III)(aib)(6)(OH)(4)(NO(3))(2)(CH(3)CN)(2.5)(H(2)O)(3.5)](ClO(4))(3)·CH(3)CN·0.75H(2)O (12·CH(3)CN·0.75H(2)O), and [Co(II)(6)Tm(III)(aib)(6)(OH)(3)(NO(3))(3)(H(2)O)(6)]·1.48(ClO(4))·1.52(NO(3))·3H(2)O (13·3H(2)O). Complex 1 describes a distorted tetrahedral metallic cluster, while complex 2 can be considered to be a 2-D coordination polymer. Complexes 3-13 can all be regarded as metallo-cryptand encapsulated lanthanides in which the central lanthanide ion is captivated within a [Co(II)(6)] trigonal prism. dc and ac magnetic susceptibility studies have been carried out in the 2-300 K range for complexes 1, 3, 5, 7, 8, 10, 12, and 13, revealing the possibility of single molecule magnetism behavior for complex 10.  相似文献   

20.
Semiconducting thin films consisting of regioregular poly(3-hexylthiophene) (RR-PHT) and poly(N-dodecylacrylamide) (pDDA) were constructed by the Langmuir-Blodgett (LB) technique. A mixture of RR-PHT and pDDA spread from a chloroform solution on a water surface forms a stable monolayer, which can be transferred onto solid substrates by the LB method, yielding a well-defined polymer LB film. Surface morphology studies of the LB film indicate that the RR-PHT is dispersed uniformly throughout the surface. The polymer thin film was chemically doped by contacting with FeCl3 acetonitrile solution, and a conductivity of 5.6 S/cm was achieved. Further, the LB film was utilized as the semiconducting film in the field-effect transistor (FET), and mobilities of 2.2 x 10(-4) and 4.4 x 10(-4) cm2 V(-1) s(-1) were obtained by analyzing the saturated and linear regions of the current-voltage characteristic, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号