首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
We report the formation and characterization of self-assembled monolayers (SAMs) based on dialkyldithiophosphinic acid adsorbates {[CH(3)(CH(2))(n)](2)P(S)SH (n = 5, 9, 11, 13, 15)} on gold substrates. SAMs were characterized using X-ray photoelectron spectroscopy, reflection-absorption infrared spectroscopy, contact angle measurements, and electrochemical impedance spectroscopy. Data show that there is a roughly 60:40 mixture of bidentate and monodentate adsorbates in each of these SAMs. The presence of monodentate adsorbates is due to the numerous and deep grain boundaries of the underlying gold substrate, which disrupt chelation. Comparing the characterization data of dialkyldithiophosphinic acid SAMs with those of analogous n-alkanethiolate SAMs shows that both SAMs follow a similar trend: The alkyl chains become increasingly organized and crystalline with increasing alkyl chain length. The alkyl groups of dialkyldithiophosphinic acid SAMs, however, are generally less densely packed than those of n-alkanethiolate SAMs. For short alkyl chains (hexyl, decyl, and dodecyl), the significantly lower packing densities cause the alkyl chains to be liquid-like and disorganized. Long-chain dialkyldithiophosphinic acid SAMs are only slightly less crystalline than analogous n-alkanethiolate SAMs.  相似文献   

2.
Four tetrathiol-terminated norbornane homologues were synthesized and self-assembled monolayers (SAMs) of these molecules were formed on Au via adsorption from CH2Cl2. SAMs were characterized structurally via spectroscopic ellipsometry (SE), reflection-absorption infrared spectroscopy (RAIRS), Rutherford backscattering spectrometry (RBS), and X-ray photoelectron spectroscopy (XPS). Results of these analyses show that the rigid norbornylogs form monolayers that have a surface coverage slightly lower than that of alkanethiols, and that they exhibit a nonmonotonic dependence of film thickness on molecular length. Nanoscale molecular junctions incorporating these SAMs were formed and characterized electrically using conducting probe atomic force microscopy (CP-AFM). The resistances of these junctions scale exponentially with the contour length of the molecules, with beta = 0.9 A(-1), consistent with a nonresonant tunneling mechanism. Further, the resistance of norbornyl SAMs correlates well with the resistance of alkanedithiol SAMs of similar length, suggesting that the norbornyl molecules form sulfur-metal bonds on both ends of the junction.  相似文献   

3.
A series of multithiol-functionalized zinc porphyrins has been prepared and characterized as self-assembled monolayers (SAMs) on Au. The molecules, designated ZnPS(n) (n = 1-4), contain from one to four [(S-acetylthio)methyl]phenylethynylphenyl groups appended to the meso-position of the porphyrin; the other meso-substituents are phenyl groups. For the dithiol-functionalized molecules, both the cis- and the trans-appended structures were examined. The ZnPS(n) SAMs were investigated using X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, and various electrochemical methods. The studies reveal the following characteristics of the ZnPS(n) SAMs. (1) The ZnPS(n) molecules bind to the Au surface via a single thiol regardless of the number of thiol appendages that are available per molecular unit. (2) The porphyrins in the ZnPS(3) and ZnPS(4) SAMs bind to the surface in a more upright orientation than the porphyrins in the ZnPS(1), cis-ZnPS(2), and trans-ZnPS(2) SAMs. The porphyrins in the ZnPS(3) and ZnPS(4) SAMs are also more densely packed than those in the cis-ZnPS(2) and trans-ZnPS(2) SAMs. The packing density of the ZnPS(3) and ZnPS(4) SAMs is similar to that of the ZnPS(1) SAMs, despite the larger size of the molecules in the former SAMs. (3) The thermodynamics and kinetics of electron transfer are generally similar for all of the ZnPS(n) SAMs. The general similarities in the electron-transfer characteristics for all of the SAMs are attributed to the similar binding motif.  相似文献   

4.
We have examined the adsorption of DNA-wrapped single-walled carbon nanotubes (DNA-SWNTs) on hydrophobic, hydrophilic, and charged surfaces of alkylthiol self-assembled monolayers (SAMs) on gold. Our goal is to understand how DNA-SWNTs interact with surfaces of varying chemical functionality. These samples were characterized using reflection absorption FTIR (RAIRS), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy. We have found that DNA-SWNTs preferentially adsorb to positively charged amine-terminated SAMs and to bare gold surfaces versus hydrophobic methyl-terminated or negatively charged carboxylic acid-terminated SAMs. Examination of the adsorption on gold of single-strand DNA (ssDNA) of the same sequence used to wrap the SWNTs suggests that the DNA wrapping plays a role in the adsorption behavior of DNA-SWNTs.  相似文献   

5.
The structural and interfacial properties of self-assembled monolayers (SAMs) on gold derived from the adsorption of a series of 1,1,1-tris(mercaptomethyl)alkanes (i.e., CH3(CH2)mC[CH2SH]3, where m = 9, 11, 13, 15) were investigated. The new SAMs, which possess uniformly low densities of alkyl chains, were characterized by ellipsometry, contact angle goniometry, and polarization modulation infrared reflection absorption spectroscopy. Additional analysis of the SAMs by X-ray photoelectron spectroscopy permitted a direct calculation of the packing densities of the SAMs on gold. The results as a whole, when compared to those obtained on SAMs generated from normal alkanethiols (CH3(CH2)m+2SH), 2-alkylpropane-1,3-dithiols (CH3(CH2)mCH[CH2SH]2), and 2-alkyl-2-methylpropane-1,3-dithiols (CH3(CH2)mC(CH3)[CH2SH]2) having analogous chain lengths, demonstrate that the 1,1,1-tris(mercaptomethyl)alkanes afford SAMs with alkyl chains having the lowest packing density and least conformational order.  相似文献   

6.
The adsorption of long-chain omega-alkoxy-n-alkanethiols [CH(3)(CH(2))(p-1)O(CH(2))(m)SH; m = 11, 19, 22; p = 18, 22] onto copper produces self-assembled monolayers (SAMs) that can provide protection against corrosion of the underlying metal substrate. The resulting films are 40-60 A in thickness and are isostructural with SAMs formed on copper from unsubstituted n-alkanethiols. As evidenced by electrochemical impedance spectroscopy (EIS), the barrier properties of these ether-containing SAMs depend on the chain length of the adsorbate and the position of the ethereal unit along the hydrocarbon chain. For SAMs where the ether substitution is farther from the copper surface, the initial coating resistances are similar to those projected for unsubstituted n-alkanethiolate SAMs of similar thickness. For SAMs where the ether substitution is nearer to the copper surface (m = 11), the resistances are significantly less than those for unsubstituted n-alkanethiolate SAMs of similar thickness, reflecting the effect of the molecular structure on the barrier properties of the film. Upon exposure to 1 atm of O(2) at 100% RH, the SAMs become less densely packed as observed by infrared (IR) spectroscopy, and their barrier properties deteriorate as observed by EIS. The rate that the SAMs lose their barrier properties upon exposure to oxidizing conditions is correlated to the strength of intermolecular interactions within the bulk state of the adsorbate.  相似文献   

7.
In this work, we demonstrate the strong resistance of oligo(phosphorylcholine) (OPC) self-assembled monolayers (SAMs) to protein adsorption and cell adhesion. OPC SAMs were characterized using X-ray photoelectron spectroscopy (XPS), and protein adsorption was measured using a surface plasmon resonance (SPR) sensor. Results are compared with those of phosphorylcholine (PC) SAMs. Despite the existence of negative charge on OPC SAMs and the simple synthesis procedure of OPC thiols, OPC SAMs resist protein adsorption as effectively as or better than PC SAMs formed from highly purified PC thiols. The ease of their preparation and the effectiveness of their function make OPC SAMs an attractive alternative for creating nonfouling surfaces.  相似文献   

8.
Self-assembled monolayers (SAMs) of the aromatic diisocyanides, 1,4-phenylenediisocyanide, 2,3,5,6-tetramethyl-1,4-phenylenediisocyanide, 4,4'-biphenyldiisocyanide, 3,3',5,5'-tetramethyl-4,4'-biphenyldiisocyanide, and 4,4' '-p-terphenyldiisocyanide, were prepared on gold and palladium surfaces. The SAMs were characterized by ellipsometry, polarization-modulated infrared reflection-absorption spectroscopy (PM-IRRAS), and grazing-angle attenuated total reflectance infrared spectroscopy (GATR). Based on the position of the metal-coordinated isocyanide stretching band, the SAMs on gold were found to bind in the terminal (eta(1)) geometry, while the SAMs on palladium prefer a different geometry which is possibly a triply bridging (mu(3)-eta(1)) geometry. A side-reaction of the unbound isocyanide in the SAM was identified as oxidation to an isocyanate group.  相似文献   

9.
In this study, two perfluoroalkyl azobenzene trichlorosilanes were synthesized and then characterized by Fourier transform infrared spectroscopy (FT-IR), 1H NMR, and 19F NMR. Subsequently, these fluorine containing trichlorosilanes were applied to form self-assembled monolayers (SAMs) on silicon substrates by the method of chemical deposition in liquid phase. The optothermal responsively isomerization of the azobenzene was achieved via UV irradiation and heat treatment. The surface structures of the SAMs were investigated by X-ray photoelectron spectroscopy (XPS), energy dispersive X-ray spectroscopy (EDS), and atomic force microscopy (AFM). The results showed that the thermal migration of the terminal fluoroalkyl groups promoted the isomerization of the azo-groups. Moreover, the reversible contact angles of the SAMs demonstrated a good reversibility of surface wettability, which was consistent with the optothermal responsive isomerization of the azo-groups.  相似文献   

10.
The structure and electronic interface properties of five differently substituted benzenethiol based self-assembled monolayers (SAMs) on Cu(100) have been studied by means of low energy electron diffraction, thermal desorption spectroscopy, X-ray absorption spectroscopy (NEXAFS), and UV photoelectron spectroscopy. Because highly ordered SAMs are formed of which lateral density had been precisely determined, effective molecular dipole moments were derived from the measured work function shifts. These values are compared with gas phase dipole moments computed by quantum chemical calculations for the individual thiol molecules considering the molecular orientation determined from NEXAFS data. Furthermore, this comparison yields clear evidence for a coverage dependent depolarization effect of the adsorbed molecules within the SAMs.  相似文献   

11.
In this paper,the membrane capacitance(Cm),which was obtained from the ecectrochemical impedance spectroscopy(EIS) method,was used to characterize the effect of pH value on the self-assembled monolayers(SAMs) of octadecanethiol(18SH) for the first time.The results not only strongly proved that inorganic ions could penetrate the SAMs of 18SH,but also ascertained that SAMs of 18SH were not an absolute of free of ion-penetration.Verifying the existence of pin-holes in the octadecanethiol SAMs was the main contribution of this paper,which coincided with the former conjecture very well.  相似文献   

12.
The structure and conformation of self-assembled monolayers (SAMs) derived from the adsorption of a specifically designed double-chained partially fluorinated thiol having the formula 12,12,13,13,14,14,15,15,16,16,17,17,18,18,19,19,19-heptadecafluoro -2-tetradecylnona-decane-1-thiol ( 2) onto the surface of evaporated gold were examined by ellipsometry, contact angle goniometry, polarization modulation infrared reflection-absorption spectroscopy (PM-IRRAS), and X-ray photoelectron spectroscopy (XPS). The results were compared to those of SAMs generated from normal hexadecanethiol ( 1) and a structurally related single-chained partially fluorinated thiol having the formula 12,12,13,13,14,14,15,15,16,16,17,17,18,18,19,19,19-heptadecafluorononadecane-1-thiol ( 3). Collectively, the studies demonstrate that the double-chained adsorbate 2 forms SAMs on gold in which the alkyl chains are less densely packed and less conformationally ordered than those in the SAMs derived from each of the single-chained adsorbates. Furthermore, the fluorocarbon moieties in the SAMs derived from 2 are more tilted from the surface normal than those in the SAMs derived from 3. The low values of contact angle hysteresis suggest, however, that the double-chained adsorbate 2 generates homogeneous monolayer films on the surface of gold.  相似文献   

13.
末端碳链长度对偶氮苯自组装膜结构的影响   总被引:4,自引:0,他引:4  
The end-group dominated molecular orientation in the azobenzene self-assembled monolayers (SAMs), CnAzoC2SH (n=1-4), on gold was evaluated for the first time by grazing incidence reflection absorption FTIR spectroscopy (RA-FTIR). All these azobenzene SAMs have highly-organized and closely-parked structures, with the molecule tilting away gradually from surface normal direction with the increase of end group alkyl length.  相似文献   

14.
Self-assembled monolayers (SAMs) of omega-substituted biphenylthiolates (omega-MBP) on gold were characterized by spectral ellipsometry, X-ray photoelectron spectroscopy (XPS), infrared reflection absorption spectroscopy (IRRAS), and vibrational sum frequency generation spectroscopy (VSFG). The vibrational studies of the SAMs were supported by an ab initio frequency analysis at HF/6-31G and BP86/6-31G levels, yielding an assignment of all relevant spectral features in the range from 3500 to 1200 cm(-1). We were able to demonstrate that hydroxy-terminated MBP (HMBP) SAMs are basically featureless in the range of the CH stretching vibrations. Accordingly, the adsorption of a SAM of octadecyltrichlorosilane (OTS) on top of this model surface could be studied. A red shift of the C-O stretching vibration from 1281 to 1264 cm(-1) was observed during the chemisorption of OTS, thus allowing for a quantification of the number of OTS molecules involved in surface binding of OTS, which was found to be about 26% on average.  相似文献   

15.
In this work, the electrochemical formation of alkanethiolate self-assembled monolayers (SAMs) on Ni(111) and polycrystalline Ni surfaces from alkanethiol-containing aqueous 1 M NaOH solutions was studied by combining Auger electron spectroscopy (AES), X-ray photoelectron spectroscopy (XPS), electrochemical techniques, and density functional theory (DFT) calculations. Results show that alkanethiolates adsorb on Ni concurrent with NiO electroreduction. The resulting surface coverage depends on the applied potential and hydrocarbon chain length. Electrochemical and XPS data reveal that alkanethiolate electroadsorption at room temperature takes place without S-C bond scission, in contrast to previous results from gas-phase adsorption. A complete and dense monolayer, which is stable even at very high cathodic potentials (-1.5 V vs SCE), is formed for dodecanethiol. DFT calculations show that the greater stability against electrodesorption found for alkanethiolate SAMs on Ni, with respect to SAMs on Au, is somewhat related to the larger alkanethiolate adsorption energy but is mainly due to the larger barrier to interfacial electron transfer present in alkanethiolate-covered Ni. A direct consequence of this work is the possibility of using electrochemical self-assembly as a straightforward route to build stable SAMs of long-chained alkanethiolates on Ni surfaces at room temperature.  相似文献   

16.
Based on electrochemical methods such as cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS), Au(111) electrodes modified by self-assembled monolayers (SAMs) of a homologous series of pyridine-terminated thiols with aromatic backbones have been investigated. An important correlation between the chain structure and film integrity in electrolytic media was found. Monolayers with odd numbers of methylene spacers in the molecular chain showed superior barrier properties compared to even numbered counterparts. A positive influence of an increase in the number of attached phenyl rings on the integrity of SAMs was observed. Furthermore, cathodic desorption of the investigated SAMs is characterized by multiwave desorption peaks and extraordinarily large cathodic charges indicating an unusual desorption process. Moreover, protonation behavior of the SAMs has been investigated by X-ray photoelectron spectroscopy (XPS) and electrochemical methods. Protonation has been found to be reversible and surface pK(a) values have been determined to be around 5 for all investigated monolayers.  相似文献   

17.
The supramolecular self-assembled monolayers (SAMs) of C(60) by thiolated beta-cyclodextrin (CD) on gold surfaces were constructed for the first time using C(60) monoanion. The results indicate that monoanionic C(60) plays a crucial role in the formation of the C(60)-containing self-assembled monolayers. The generation of C(60) monoanion and the formation process of C(60) SAMs were monitored in-situ by UV-visible and near-IR spectroscopy. The resulting C(60) SAMs were fully characterized by spectroscopic ellipsometry (SE), cyclic voltammetry, X-ray photoelectron spectroscopy (XPS), and water contact angle measurements. After the immobilization of C(60) by the SAMs of thiolated beta-CD, the film thickness increased by approximately 1 nm from 0.8 to 1.8 nm as determined by SE, demonstrating the formation of the supramolecular self-assembled monolayers of thiolated beta-CD/C(60). The new C(60) SAMs exhibited one quasi-reversible redox couple at half wave potential of -0.57 V vs SCE in aqueous solution containing 0.1 M KCl. The surface coverage of C(60) on the gold surfaces was estimated to be 1.1 x 10(-10) mol cm(-2). The XPS showed the assembly of C(60) over the thiolated beta-CD SAMs. The surface hydrophobicity increased greatly upon the formation of the C(60)-containing SAMs as analyzed by water contact angle measurements. The results are in agreement with the formation of 1:1 complex of C(60) and cyclodextrin on gold surfaces, though it also reveals some non-homogeneous features of the monolayers.  相似文献   

18.
Formation of biomineral structures is increasingly attributed to directed growth of a mineral phase from an amorphous precursor on an organic matrix. While many in vitro studies have used calcite formation on organothiol self-assembled monolayers (SAMs) as a model system to investigate this process, they have generally focused on the stability of amorphous calcium carbonate (ACC) or maximizing control over the order of the final mineral phase. Little is known about the early stages of mineral formation, particularly the structural evolution of the SAM and mineral. Here we use near-edge X-ray absorption spectroscopy (NEXAFS), photoemission spectroscopy (PES), X-ray diffraction (XRD), and scanning electron microscopy (SEM) to address this gap in knowledge by examining the changes in order and bonding of mercaptophenol (MP) SAMs on Au(111) during the initial stages of mineral formation as well as the mechanism of ACC to calcite transformation during template-directed crystallization. We demonstrate that formation of ACC on the MP SAMs brings about a profound change in the morphology of the monolayers: although the as-prepared MP SAMs are composed of monomers with well-defined orientations, precipitation of the amorphous mineral phase results in substantial structural disorder within the monolayers. Significantly, a preferential face of nucleation is observed for crystallization of calcite from ACC on the SAM surfaces despite this static disorder.  相似文献   

19.
Self-assembled monolayers (SAMs) of two omega-(4'-methylbiphenyl-4-yl)alkanethiols (CH(3)(C(6)H(4))(2)(CH(2))(n)SH, BPn, n = 4, 6) on Au(111) substrates, prepared from solution at room temperature and subsequently annealed at temperatures up to 493 K under a nitrogen atmosphere, were studied using scanning tunneling microscopy (STM), high-resolution X-ray photoelectron spectroscopy (HRXPS), and near-edge X-ray absorption fine structure spectroscopy (NEXAFS). In striking contrast to BPn SAMs with n = odd, for which only one phase is observed, the even-numbered BPn SAMs exhibit polymorphism. Irreversible phase transitions occur which involve three phases differing substantially in density and stability. Upon annealing, BP4 and BP6 transform into a beta-phase, which is characterized by an exceptionally high structural quality with virtually defect-free domains exceeding 500 nm in diameter. Exchange experiments, monitored by contact angle measurement, reveal that the beta-phase exhibits a dramatically improved stability. The fundamental differences in the phase behavior of even- and odd-numbered BPn SAMs are discussed in terms of two design strategies based on cooperative and competitive effects.  相似文献   

20.
Siloxane-anchored, self-assembled monolayers (SAMs) on single crystal Si were prepared with a variety of surface functional groups using a single commercially available surfactant (1-bromo-11-(trichlorosilyl)undecane) followed by in situ transformations. Polar (thioacetate and thiol), nonpolar (methyl), acidic (sulfonic and carboxylic), basic (various amines), and ionic (alkylammonium) surface functionalities were prepared. For primary amine and sulfonate surfaces, the degree of surface charge as a function of pH was determined ex situ using X-ray photoelectron spectroscopy (XPS). Sulfonate SAMs exhibited much higher effective pKa (approximately 2) than dilute sulfonic acid (-5 to -6), and amine SAMs exhibited much lower pKa (approximately 3) than dilute organic amines (approximately 10). This is attributed to the stabilization of nonionized groups by adjacent ionized groups in the SAM. Zeta potentials of these SAMs as a function of pH were consistent with the XPS results and indicated that ionizable SAM surfaces can generate surface potentials much higher than those of nonionic SAMs (thioacetate, methyl) and typical oxide surfaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号