首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Poly(ethylene glycol) (PEG) self-assembled monolayers (SAMs) are extensively used to modify substrates to prevent nonspecific protein adsorption and to increase hydrophilicity. X-ray photoelectron spectroscopy analysis, complemented by water contact angle measurements, is employed to investigate the formation and stability upon aging and heating of PEG monolayers formed on gold and silicon nitride substrates. In particular, thiolated PEG monolayers on gold, with and without the addition of an undecylic spacer chain, and PEG monolayers formed with oxysilane precursors on silicon nitride have been probed. It is found that PEG-thiol SAMs are degraded after less than two weeks of exposure to air and when heated at temperatures as low as 120 degrees C. On the contrary, PEG-silane SAMs are stable for more than two weeks, and fewer molecules are desorbed even after two months of aging, compared to those desorbed in two weeks from the PEG-thiol SAMs. A strongly bound hydration layer is found on PEG-silane SAMs aged for two months. Heating PEG-silane SAMs to temperatures as high as 160 degrees C improves the quality of the monolayer, desorbing weakly bound contaminants. The differences in stability between PEG-thiol SAMs and PEG-silane SAMs are ascribed to the different types of bonding to the surface and to the fact that the thiol-Au bond can be easily oxidized, thus causing desorption of PEG molecules from the surface.  相似文献   

2.
The transfer of functional molecules onto self-assembled monolayers (SAMs) by means of soft and scanning-probe lithographic techniques-microcontact printing (muCP) and dip-pen nanolithography (DPN), respectively-and the stability of the molecular patterns during competitive rinsing conditions were examined. A series of guests with different valencies were transferred onto beta-cyclodextrin- (beta-CD-) terminated SAMs and onto reference hydroxy-terminated SAMs. Although physical contact was sufficient to generate patterns on both types of SAMs, only molecular patterns of multivalent guests transferred onto the beta-CD SAMs were stable under the rinsing conditions that caused the removal of the same guests from the reference SAMs. The formation of kinetically stable molecular patterns by supramolecular DPN with a lateral resolution of 60 nm exemplifies the use of beta-CD-terminated SAMs as molecular printboards for the selective immobilization of printboard-compatible guests on the nanometer scale through the use of specific, multivalent supramolecular interactions. Electroless deposition of copper on the printboard was shown to occur selectively on the areas patterned with dendrimer-stabilized gold nanoparticles.  相似文献   

3.
The first self-assembly of a C60 pi-extended tetrathiafulvalene (exTTF) dyad on a gold surface is reported. Four fullerene derivatives, two of them containing p-quinonoid pi-extended tetrathiafulvalenes (exTTFs), have been synthesized, and their solution electrochemistry has been investigated by means of cyclic voltammetry. Fullerene-containing SAMs of thioctic acid derivatives 3 and 6 have also been investigated by cyclic voltammetry. The cyclic voltammograms of both compounds exhibit three reversible reduction waves, and for compound 6, one irreversible oxidation process corresponding to the oxidation of the exTTF subunit is observed. Stable self-assembled monolayers (SAMs) of fullerene derivative 3 were formed on gold surfaces, whereas dyad 6 does not present a very clear electrochemical response, most probably as a result of structural rearrangements on the monolayer or charge transfer between the C60 and exTTF moieties.  相似文献   

4.
Surface immobilization of pristine C60 by supramolecular interactions is an attractive way to introduce C60 on surfaces since the pi-electron network and the electronic properties of C60 remain intact. Several hosts have been developed for surface complexation of C60. With few exceptions, the hosts reported to date are "electronically inert", limiting the potential applications of pristine C60-based devices. In this study, we present the synthesis and self-assembly of a potential tweezer-like host for C60 having a light-harvesting moiety and an electron-donating unit. More precisely, an azide-containing [3]rotaxane scaffold having ferrocene moieties as blocking group and thioctic acid as anchoring group for a gold surface has been synthesized. This [3]rotaxane has been self-assembled on gold in its protonated (NH2+) (1p) and neutral (NH) (1n) forms and characterized using electrochemistry, XPS, and contact angle measurements. The SAMs were functionalized with free-base and zinc porphyrin using copper-catalyzed 1,3-dipolar cycloaddition in optimized conditions. In combination with C60, this new host is expected to form a triad that could potentially be used as active building block in the preparation of nanostructured electrodes for photoelectrochemical application.  相似文献   

5.
Poly(isobutene-alt-maleic acid)s modified with p-tert-butylphenyl or adamantyl groups interact with beta-cyclodextrin self-assembled monolayers (beta-CD SAMs) by inclusion of the hydrophobic substituents in the beta-cyclodextrin cavities. The adsorption was shown to be strong, specific, and irreversible. Even with a monovalent competitor in solution, adsorption to the beta-CD SAMs was observed, and desorption proved impossible. The adsorbed polymer layer was very thin as evidenced by surface plasmon resonance spectroscopy and AFM. Apparently, all or most hydrophobic groups of the polymers were employed efficiently in multivalent binding, as was further supported by the absence of specific binding of beta-CD-modified gold nanoparticles to the polymer surface assemblies. Supramolecular microcontact printing of the polymers onto the beta-CD SAMs led to assembly formation in the targeted areas of the substrates.  相似文献   

6.
The formation of self-assembled chemisorbed monolayers (SAM) of 8-amino-1-undecane thiol functionalized with fullerene C(60) on gold, has been studied by contact angle measurements, Fourier transform infrared-attenuated total reflection (FTIR-ATR) spectroscopy, and X-ray photoelectron spectroscopy (XPS). A two-step procedure was followed consisting of the chemisorption of amine-terminated organosulfur compounds, followed by their reaction with fullerenes at the solid-liquid interface. Covalent binding of fullerenes to these attachment layers was accessed by FTIR-ATR and XPS. ATR showed several major features in the C(60) skeleton ring vibration region along with all the characteristic features of the aminothiol. With increase in carbon to sulfur ratio, appearance of a C1s shake-up satellite peak due to the characteristic pi-pi(*) transition of the C(60) backbone and a low binding energy N1s feature confirmed the z.sbnd;NH(2) binding at the 6,6 double bond of the C(60) cage. Possible explanations for these experimental findings are discussed.  相似文献   

7.
We report the reactivity of acetylenyl-terminated self-assembled monolayers (SAMs) on gold toward "click" chemistry, Huisgen 1,3-dipolar addition, leading to the formation of triazoles. After the formation of acetylenyl-terminated SAMs, the triazole formation was performed on the SAMs and the reaction was confirmed by Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, ellipsometry, and contact angle goniometry. "Click" chemistry has offered a versatile strategy for the functionalization in solution chemistry with mild reaction conditions and a high compatibility in functional groups, and our result shows that the reaction could be applied to acetylenyl-terminated SAMs for the introduction of useful functional groups to the surfaces.  相似文献   

8.
A simple, fast, and low-compound-consuming procedure based on the air-liquid interface-assisted method for preparing self-assembled monolayers (SAMs) of organic molecules with phosphonic acid head groups on the native oxide surface of silicon was demonstrated. The SAMs thus prepared were characterized by contact angle measurement, X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), and atomic force microscopy (AFM). This approach enabled the fabrication of ordered SAMs in a large-area substrate.  相似文献   

9.
A tandem time-of-flight mass spectrometer with an intermediate surface was used to quantify electron transfer during glancing incidence scattering of hyperthermal C(60) (+) (E(coll)=250-500 eV, theta(in)=75 degrees ) from (i) self-assembled monolayers of n-alkylthiols on gold (of various chain lengths), (ii) partly fluorinated alkylthiols on gold, as well as (iii) clean gold surfaces. Self-assembled monolayers (SAMs) behave as insulating layers with their thicknesses determining the electron tunneling probability during collision. Correspondingly, a roughly exponential dependence of the neutralization probability on the chain length n was found. A pronounced dependence of the neutral yield on the primary beam kinetic energy indicates that dynamic SAM deformation and associated projectile penetration depth also play a role in determining electron transfer efficiency. Results are consistent with the molecular deformability of SAMs as determined with other experimental methods.  相似文献   

10.
We report on methods to fabricate robust micro- and nanopatterned platforms, comprising high functional group densities and quasi three-dimensional structures, for possible applications in biochip array technologies. For this purpose, amine-terminated poly(amidoamine) (PAMAM) dendrimers were immobilized via amide linkage formation on 11,11'-dithiobis(N-hydroxysuccinimidylundecanoate) (NHS-C10) self-assembled monolayers (SAMs) on gold surfaces. The coupling reaction and the resulting assemblies were characterized by grazing incidence reflection Fourier transform infrared spectroscopy, contact angle measurements, X-ray photoelectron spectroscopy (XPS), and atomic force microscopy; the obtained surface coverage values were successfully fitted with a Langmuir isotherm. The fraction of unreacted peripheral primary amine groups of the surface-immobilized PAMAM dendrimers was 28% as determined by XPS analysis of trifluoroacetic anhydride-labeled assemblies. Patterning of the PAMAM dendrimers on NHS-C10 SAMs on the micrometer and sub-100-nm scale was achieved by microcontact printing and dip pen nanolithography. The resulting patterns are characterized by their high degree of order and stability of the transferred molecules due to covalent attachment.  相似文献   

11.
Ordered, tightly packed aryl-azide-terminated, self-assembled monolayers (SAMs) were created on gold substrates from a new disulfide precursor. These monolayers were reduced at least partially in an aqueous environment using approximately 2 nm CdS quantum dots (Qdots) as photocatalysts to give mixed monolayers of arylamine- and aryl azide-terminated species. The CdS photocatalysts were made available for the reaction by exposure of the azide-terminated SAM to Qdots initially in solution or by preadsorption of the CdS nanoparticles on the SAM. In either case, X-ray photoelectron spectroscopy (XPS), grazing angle Fourier transform infrared spectroscopy (FTIR), and contact angle measurements were used to show the occurrence of the photocatalytic reduction. As further evidence for the presence of arylamine-terminated thiolate in the reduced SAM, these arylamine groups were successfully tagged with fluorescein isothiocyanate (FITC). The use of Qdot photocatalysts to functionalize surfaces may lead to a means to pattern surfaces at the nanoscale.  相似文献   

12.
The structure and conformation of self-assembled monolayers (SAMs) derived from the adsorption of a specifically designed double-chained partially fluorinated thiol having the formula 12,12,13,13,14,14,15,15,16,16,17,17,18,18,19,19,19-heptadecafluoro -2-tetradecylnona-decane-1-thiol ( 2) onto the surface of evaporated gold were examined by ellipsometry, contact angle goniometry, polarization modulation infrared reflection-absorption spectroscopy (PM-IRRAS), and X-ray photoelectron spectroscopy (XPS). The results were compared to those of SAMs generated from normal hexadecanethiol ( 1) and a structurally related single-chained partially fluorinated thiol having the formula 12,12,13,13,14,14,15,15,16,16,17,17,18,18,19,19,19-heptadecafluorononadecane-1-thiol ( 3). Collectively, the studies demonstrate that the double-chained adsorbate 2 forms SAMs on gold in which the alkyl chains are less densely packed and less conformationally ordered than those in the SAMs derived from each of the single-chained adsorbates. Furthermore, the fluorocarbon moieties in the SAMs derived from 2 are more tilted from the surface normal than those in the SAMs derived from 3. The low values of contact angle hysteresis suggest, however, that the double-chained adsorbate 2 generates homogeneous monolayer films on the surface of gold.  相似文献   

13.
This paper describes the generation of reversible patterns of self-assembled monolayers (SAMs) on gold and silicon oxide surfaces via the formation of reversible covalent bonds. The reactions of (patterned) SAMs of 11-amino-1-undecanethiol (11-AUT) with propanal, pentanal, decanal, or terephthaldialdehyde result in dense imine monolayers. The regeneration of these imine monolayers to the 11-AUT monolayer is obtained by hydrolysis at pH 3. The (patterned) monolayers were characterized by Fourier transform infrared reflection absorption spectroscopy, X-ray photoelectron spectroscopy, contact angle and electrochemical measurements, and atomic force microscopy. Imines can also be formed by microcontact printing of amines on terephthaldialdehyde-terminated substrates. Lucifer Yellow ethylenediamine was employed as a fluorescent amine-containing marker to visualize the reversible covalent patterning on a terephthaldialdehyde-terminated glass surface by confocal microscopy. These experiments demonstrate that with reversible covalent chemistry it is possible to print and erase chemical patterns on surfaces repeatedly.  相似文献   

14.
用自组装技术在金(纯金和经阳极氧化的金)表面上获得了新型两亲聚合物PAMC_(16)S的有序膜。用接触角测试,XPS谱和电化学分析等方法对自组装膜进行了表征。根据膜表面的润湿性,金表面的自组装膜是疏水的,亲水的磺酸基团连于金表面,而疏水的碳氢链从表面伸展出。XPS实验结果支持金表面上单层膜的疏水结构。聚合物单层膜复盖的金电极起到含有针孔缺陷的阻膈型电极的作用。单层膜在法拉第反应中显示很强的吸附稳定性,说明聚合物LB膜在潜在应用中有其特有的特点。  相似文献   

15.
为了寻求新的自组装单分子膜体系,构建新的功能膜,研究了具备平面型的大环共轭硒杂环化合物-- 4,5-苯并苤硒脑(苯并[c]硒二唑,简称苤硒脑)在金表面的自组装单分子膜.通过X射线光电子能谱(XPS)和电化学手段对其进行表征.XPS研究结果表明,自组装形成单分子膜后,苤硒脑分子中Se3d结合能从57.4 eV下降到57.1 eV;表明硒杂环化合物是通过金硒键固定在金表面上的;电化学循环伏安法实验表明,金电极表面上自组装该有机硒后, Fe(CN)63-/4-的氧化还原峰几乎完全消失;以四硼酸钠为底液,测得该化合物自组装在金表面上时,其还原电位在-0.66 V,与在溶液中用裸金电极测得的还原峰电位基本一致.  相似文献   

16.
The preparation of self-assembled monolayers (SAMs) of organophosphonic acids on indium tin oxide (ITO) surfaces from different solvents (triethylamine, ethyl ether, tetrahydofuran (THF), pyridine, acetone, methanol, acetonitrile, dimethyl sulfoxide (DMSO), or water) has been performed with some significant differences observed. Cyclic voltammetry (CV), X-ray photoelectron spectroscopy (XPS), scanning tunneling microscopy (STM), and contact angle measurement demonstrated that the quality of SAMs depends critically on the choice of solvents. Higher density, more stable monolayers were formed from solvents with low dielectric constants and weak interactions with the ITO. It was concluded low dielectric solvents that were inert to the ITO gave monolayers that were more stable with a higher density of surface bound molecules because higher dielectric constant solvents and solvents that coordinate with the surface disrupted SAM formation.  相似文献   

17.
We have examined the adsorption of DNA-wrapped single-walled carbon nanotubes (DNA-SWNTs) on hydrophobic, hydrophilic, and charged surfaces of alkylthiol self-assembled monolayers (SAMs) on gold. Our goal is to understand how DNA-SWNTs interact with surfaces of varying chemical functionality. These samples were characterized using reflection absorption FTIR (RAIRS), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy. We have found that DNA-SWNTs preferentially adsorb to positively charged amine-terminated SAMs and to bare gold surfaces versus hydrophobic methyl-terminated or negatively charged carboxylic acid-terminated SAMs. Examination of the adsorption on gold of single-strand DNA (ssDNA) of the same sequence used to wrap the SWNTs suggests that the DNA wrapping plays a role in the adsorption behavior of DNA-SWNTs.  相似文献   

18.
Self-assembled monolayers (SAMs) were formed by the spontaneous adsorption of octythiocyanate (OTC) on Au(111) using both solution and ambient-pressure vapor deposition methods at room temperature and 50 degrees C. The surface structures and adsorption characteristics of the OTC SAMs on Au(111) were characterized by scanning tunneling microscopy (STM) and X-ray photoelectron spectroscopy (XPS). The STM observation showed that OTC SAMs formed in solution at room temperature have unique surface structures including the formation of ordered and disordered domains, vacancy islands, and structural defects. Moreover, we revealed for the first time that the adsorption of OTC on Au(111) in solution at 50 degrees C led to the formation of SAMs containing small ordered domains, whereas the SAMs formed by vapor deposition at 50 degrees C had long-range ordered domains, which can be described as (radical3 x 2 radical19)R5 degrees structures. XPS measurements of the peaks in the S 2p and N 1s regions for the OTC SAMs showed that vapor deposition is the more effective method as compared to solution deposition for obtaining high-quality SAMs by adsorption of OTC on gold. The results obtained will be very useful in understanding the SAM formation of organic thiocyanates on gold surfaces.  相似文献   

19.
Adsorption states of dioctyl dichalcogenides (dioctyl disulfide, dioctyl diselenide, and dioctyl ditelluride) arranged on Au(111) have been studied by X-ray photoelectron spectroscopy (XPS), infrared-visible sum-frequency generation (SFG), and ultraviolet photoelectron spectroscopy (UPS). XPS measurements suggest that dioctyl dichalcogenides dissociatively adsorbed on Au(111) surfaces to form the corresponding monolayers having chalcogen-gold covalent bonds. The elemental compositions of octanechalcogenolates on Au(111) indicate that the saturation coverages of the octyl heavy chalcogenolate (OcSe, OcTe) monolayers are lower than that of the octanethiolate (OcS) self-assembled monolayers (SAMs). The SFG observations of the CH(2) vibrational bands for the heavy chalcogenolate monolayers strongly suggest that a discernible amount of gauche conformation exists in the monolayers, while OcS SAMs adopt highly ordered all-trans conformation. The intensity ratio of the symmetric and asymmetric CH(3) stretching vibration modes measured by SFG shows that the average tilt angle of the methyl group of the OcSe monolayers is greater than that of the OcS SAMs. The larger tilt angle of the methyl group and the existence of a discernible amount of gauche conformation in the OcSe monolayers are due to the lower surface coverage of the OcSe monolayers compared with the OcS SAMs. The smaller polarization dependence in the angle-resolved UPS (ARUPS) spectra of the OcSe monolayers than that of the OcS SAMs is caused by the more disordered structures of the alkyl chain in the former. XPS, SFG, and ARUPS measurements indicate a similar tendency for the OcTe monolayers. The density of states (DOS) observed by UPS at around 1.3 eV for OcS adsorbed on Au(111) is considered to be the antibonding state of the Au-sulfur bond. Similar DOS is also observed by UPS at around 1.0 eV for the OcSe monolayers and at approximately 1.6 eV for the OcTe monolayers on Au(111).  相似文献   

20.
The formation of particle monolayers by convective assembly was studied in situ with three different kinds of particle-surface interactions: adsorption onto native surfaces, with additional electrostatic interactions, and with supramolecular host-guest interactions. In the first case carboxylate-functionalized polystyrene (PS-COOH) particles were assembled onto native silicon oxide surfaces, in the second PS-COOH onto protonated amino-functionalized (NH3+) self-assembled monolayers (SAMs), and in the third beta-CD-functionalized polystyrene (PS-CD) particles onto beta-CD SAMs with pre-adsorbed ferrocenyl-functionalized dendrimers. The adsorption and desorption behaviors of particles onto and from these surfaces were observed in situ on a horizontal deposition setup, and the packing density and order of the adsorbed particle lattices were compared. The desorption behavior of particles from surfaces was evaluated by reducing the temperature below the dew point, thus initiating water condensation. Particle lattices on native oxide surfaces formed the best hexagonal close packed (hcp) order and could be easily desorbed by reducing the temperature to below the dew point. The electrostatically modified assembly resulted in densely packed, but disordered particle lattices. The specificity and selectivity of the supramolecular assembly process were optimized by the use of ferrocenyl-functionalized dendrimers of low generation and by the introduction of competitive interaction by native beta-CD molecules during the assembly. The fine-tuned supramolecularly formed particle lattices were nearly hcp packed. Both electrostatically and supramolecularly formed lattices of particles were strongly attached to the surfaces and could not be removed by condensation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号