首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 636 毫秒
1.
He G  Zhao Y  He C  Liu Y  Duan C 《Inorganic chemistry》2008,47(12):5169-5176
A new Cu2+ compound Cu- NB, (where H2 NB is bis(2-hydroxyl-naphthalene-carboxaldehyde) benzil dihydrazone) was synthesized as a highly selective fluorescence chemosensor for the detection of Hg2+ in aqueous media through a displacement "turn-on" signaling strategy. Whereas the coordination of Cu2+ resulted in a considerable quenching of the typical luminescence of the naphthol rings in Cu-NB, the addition of Hg2+ ion led to a dramatic increase in the emission intensity of Cu-NB at about 530 nm (excitation at 430 nm). The competitive fluorescent experiments showed that alkali, alkaline earth metal ions, the group 12 metals Zn2+, Cd2+, the first-row transition-metal ions such as Mn2+, Fe2+, Co2+, and Ni2+, as well as Pb2+ could not inhibit the Hg2+-binding fluorescent enhancement. It is postulated that the existence of Cu2+ in the luminescent probe Cu-NB could turn away the interferences of other metal cations from Hg2+ detection. The optical responses of the free ligand upon addition of Cu2+ ion, and of the Hg-H2NB compound upon the addition of Cu2+ were also investigated for comparisons.  相似文献   

2.
Luminescence properties of quantum dots (QDs) are closely related to their surface structure and chemical properties. In this work some ensemble techniques and fluorescence correlation spectroscopy (FCS) were used to study the fluorescence quenching and dialysis process of CdTe QDs. It is found that when some heavy metal ions, such as silver ions (Ag+), quench QDs, the free Ag+ ions bind with bare Te atoms and form the AgTe structure on the surface. The FCS experimental results show that the quenching process is not the gradual reduction of fluorescence intensity of single QDs, but the decrease in the number of bright QDs with the addition of Ag+ ions. In other words, the bright QDs turn into dark directly in the quenching process. It is observed that some dark QDs converse into the bright QDs in the dialysis experiments and the dialysis process can improve the brightness per QDs. Furthermore, the results of FCS and fluorescence spectroscopy illustrate that the increase of the fluorescence quantum yield (QY) is mainly attributed to the removal of excess unreacted Cd-MPA complex and the possible chemical change of the QDs surface in the dialysis process. These new results can help us to further understand the complex surface structure of water-soluble QDs, improve their surface chemical features, and expand their applications in some fields.  相似文献   

3.
[structure: see text]. A new fluorescent chemosensor for Cu2+ ions was synthesized by modifying the tripeptide glycyl-histidyl-lysine (GHK) with 9-carbonylanthracene via the standard Fmoc solid-phase peptide synthesis method. While significant fluorescence quenching was observed from the molecule upon binding with Cu2+, addition of Fe2+, Co2+, Ni2+, and Zn2+ to the peptide solution caused a minimum fluorescence emission spectral change, indicating a high specificity of this chemosensor for Cu2+ ions. Effects of pH were also investigated.  相似文献   

4.
The interaction between water-soluble zinc sulfide quantum dots (ZnS QDs) and selenite ion was investigated by photoluminescence method. The water-soluble ZnS QDs were synthesized using a simple and fast procedure based on the co-precipitation of nanoparticles in an aqueous solution in the presence of 3-mercaptopropionic acid (MPA), as the capping agent. Fluorescence intensity for MPA–ZnS QDs, with a strong fluorescent emission at about 430 nm, decreased in the presence of selenite. The influence of the effective parameters including pH and temperature was investigated. The results showed that under the optimum conditions, the fluorescence intensity change of QDs was linearly proportional to the selenite concentration in the range 4.0 × 10?5–7.2 × 10?4 mol L?1. Moreover, the quenching mechanism was discussed to be a static quenching procedure.  相似文献   

5.
Submicrometer fluorescent polystyrene (PS) particles have been synthesized via miniemulsion polymerization using CdSe/ZnS core-shell quantum dots (QDs). The influence of QD concentration, QD coating (either trioctylphosphine oxide (TOPO)-coated or vinyl-functionalized), and surfactant concentration on the polymerization kinetics and the photoluminescence properties of the prepared particles has been analyzed. Polymerization kinetics were not altered by the presence of QDs, whatever their surface coating. Latexes exhibited particle sizes ranging from 100 to 350 nm, depending on surfactant concentration, and a narrow particle size distribution was obtained in all cases. The fluorescence signal of the particles increased with the number of incorporated TOPO-coated QDs. The slight red shift of the emission maximum was correlated with phase separation between PS and QDs, which occurred during the polymerization, locating the QDs in the vicinity of the particle/water interface. QD-tagged particles displayed higher fluorescence intensity with TOPO-coated QDs compared to those with the vinyl moiety. The obtained fluorescent particles open up new opportunities for a variety of applications in biotechnology.  相似文献   

6.
Mandal A  Dandapat A  De G 《The Analyst》2012,137(3):765-772
A green and simple chemical synthesis of magic sized water soluble blue-emitting ZnS quantum dots (QDs) has been accomplished by reacting anhydrous Zn acetate, sodium sulfide and thiolactic acid (TLA) at room temperature in aqueous solution. Refluxing of this mixture in open air yielded ZnS clusters of about 3.5 nm in diameter showing very strong and narrow photoluminescence properties with long stability. Refluxing did not cause any noticeable size increment of the clusters. As a result, the QDs obtained after different refluxing conditions showed similar absorption and photoluminescence (PL) features. Use of TLA as a capping agent effectively yielded such stable and magic sized QDs. The as-synthesized and 0.5 h refluxed ZnS QDs were used as a fluorescence sensor for Ag(+) ions. It has been observed that after addition of Ag(+) ions of concentration 0.5-1 μM the strong fluorescence of ZnS QDs was almost quenched. The quenched fluorescence can be recovered by adding ethylenediamine to form a complex with Ag(+) ions. The other metal ions (K(+), Ca(2+), Au(3+), Cu(2+), Fe(3+), Mn(2+), Mg(2+), Co(2+)) showed little or no effect on the fluorescence of ZnS QDs when tested individually or as a mixture. In the presence of all these ions, Ag(+) responded well and therefore ZnS QDs reported in this work can be used as a Ag(+) ion fluorescence sensor.  相似文献   

7.
罗丹明类荧光探针的合成及对铜离子的检测   总被引:1,自引:0,他引:1  
合成了罗丹明类Cu2+荧光增强型分子探针3',6'-双(二乙氨基)-2-(N-乙叉基氨基)螺[异吲哚-1,9'-占吨]-3-酮(RA),并研究了它的光谱性能及对铜离子的识别作用.在乙腈/水(体积比1/1)的介质中,当加入Cu2+后探针RA显玫瑰红色,最大吸收波长为548 nm,最大发射波长为571 nm,且荧光强度显著增强,但是,其它常见离子如Na+, K+, Mg2+, Ca2+, Mn2+, Cd2+, Cr3+, Co2+, Ni2+, Ag+, Pb2+, Zn2+, Fe3+, Hg2+不引起或引起很小的紫外/可见或荧光光谱变化.RA的选择性荧光增强主要是由于Cu2+诱导分子中的酰胺闭环结构发生开环,导致分子结构的共轭程度增大.在6.5×10-8~2.9×10-6 mol?L-1范围内RA可以有效检测Cu2+,检测限为5.0×10-8 mol?L-1.RA对Cu2+的识别不可逆,而且探针RA对pH值不敏感,可以在比较宽的范围内(pH=4.1~10.5)高灵敏、高选择性检测Cu2+.  相似文献   

8.
宗国强  吕功煊 《化学学报》2009,67(2):157-161
合成了L-精氨酸蒽衍生物1, 考察了碱土及过渡金属离子对主体分子1荧光光谱的影响, 结果发现, 在中性水溶液条件下只有Cu2+能有效地猝灭其荧光. 另外, 通过OH-/H+和Cu2+/乙二胺四乙酸(EDTA)均能对化合物1的荧光强度进行可逆性调控. 在此基础上, 我们以化合物1水溶液作为起始状态, 以OH-和Cu2+为两化学输入, 构建了一个“或非”(NOR)分子逻辑门; 以1-Cu2+水溶液体系作为起始状态, 以H+和EDTA为两化学输入, 构建了一个“或”(OR)分子逻辑门.  相似文献   

9.
水溶性的CdSe/CdS/ZnS量子点的合成及表征   总被引:3,自引:0,他引:3  
L-半胱氨酸盐(Cys)作为稳定剂,合成了水溶性的双壳结构的CdSe/CdS/ZnS半导体量子点。吸收光谱和荧光光谱结果表明,双壳结构的CdSe/CdS/ZnS纳米微粒比单一的CdSe核纳米粒子和单核壳结构的CdSe/CdS纳米粒子具有更优异的发光特性。用透射电子显微镜(TEM)、ED、XRD、XPS和FTIR等方法对CdSe核和双壳层的CdSe/CdS/ZnS纳米微粒的结构、分散性及形貌分别进行了表征。  相似文献   

10.
设计合成了吡咯并[2,1,5-cd]中氮茚酰腙衍生物6. 测试了其紫外光谱和荧光光谱, 研究了其对铜离子的选择性识别作用. 结果表明, 化合物6作为铜离子荧光探针, 受常见离子干扰较小, 对于铜离子有着较高的选择性和较低的检出限.  相似文献   

11.
Original organic capping TOPO/TOP groups of CdSe and CdSe/ZnS quantum dots (QDs), from mother solution were replaced with 2_mercaptoethanol, which was chosen as model compound, in order to achieve water solubility. Obtained water dispersions of CdSe and CdSe/ZnS QDs were characterized by UV/VIS absorption and luminescence techniques. Luminescence measurements revealed that bare cores are very sensitive to surface capping, transfer into water diminished emission intensity. Core/shell, CdSe/ZnS, QDs are much more resistant to changes of the capping and solvent, and significant part of emission intensity was preserved in water. The article is published in the original.  相似文献   

12.
以3-巯基丙酸作为修饰剂,在水溶液中合成了稳定的CdSe/ZnS量子点(QDs),透射电镜观察所合成量子点的形貌近似球形,粒径约为25 nm.吸收光谱与荧光光谱的研究表明,CdSe QDs在410 nm处有最大吸收峰,而CdSe/ZnS QDs的最大吸收峰在470 nm处,CdSe/ZnS QDs的荧光强度是CdSe QDs的11倍.考察了缓冲溶液的体积、pH值、反应温度、反应时间对体系荧光的影响.在最佳实验条件下,体系的荧光强度与BSA的浓度呈线性关系,线性响应范围为0.746×10-7~4.48×10-7 mol/L,检出限为3.846×10-10 mol/L.并且CdSe/ZnS QDs荧光强度基本保持稳定,可达两个多月.该方法应用于合成样品的测定,结果满意.  相似文献   

13.
Weng YQ  Yue F  Zhong YR  Ye BH 《Inorganic chemistry》2007,46(19):7749-7755
A new copper(II) fluorescent sensor 5,10,15,20-tetra((p-N,N-bis(2-pyridyl)amino)phenyl)porphyrin zinc (1) has been designed and synthesized by the Ullmann-type condensation of bromoporphyrin zinc with 2,2'-dipyridylamine (dpa) under copper powder as a catalyst as well as with K2CO3 as the base in a DMF solution. It consists of two separately functional moieties: the zinc porphyrin performs as a fluorophore, and the dpa-linked-to-zinc porphyrin acts as a selected binding site for metal ions. It displays a high selectivity and antidisturbance for the Cu2+ ion among the metal ions examined (Na+, Mg2+, Cr3+, Mn2+, Fe2+, Co2+, Ni2+, Cu2+, Ag+, Zn2+, Cd2+, Hg2+, and Fe3+) and exhibits fluorescence quenching upon the binding of the Cu2+ ion with an "on-off"-type fluoroionophoric switching property. The detection limit is found to be 3.3 x 10(-7) M (3s blank) for Cu2+ ion in methanol solution, and its fluorescence can be revived by the addition of EDTA disodium solution. The design strategy and remarkable photophysical properties of sensor 1 help to extend the development of fluorescent sensors for metal ions.  相似文献   

14.
In this paper, fluorescence correlation spectroscopy (FCS) was applied to measure the size of water-soluble quantum dots (QDs). The measurements were performed on a home-built FCS system based on the Stokes-Einstein equation. The obtained results showed that for bare CdTe QDs the sizes from FCS were larger than the ones from transmission electron microscopy (TEM). The brightness of QDs was also evaluated using FCS technique. It was found that the stability of the surface chemistry of QDs would be significantly improved by capping it with hard-core shell. Our data demonstrated that FCS is a simple, fast, and effective method for characterizing the fluorescent quantum dots, and is especially suitable for determining the fluorescent nanoparticles less than 10 nm in water solution.  相似文献   

15.
设计合成了6个1-乙酰基-3-(2-羟基-4,6二甲氧基苯基)-5-芳基-2-吡唑啉化合物4a~4f.测试了它们的紫外光谱和荧光光谱,研究了其对铜离子的选择性识别作用.结果表明,化合物4f作为铜离子荧光探针,受常见离子干扰较小,对于铜离子有着较高的选择性和较低的检出限.  相似文献   

16.
CdSe/CdS quantum dots(QDs) functionalized by thiourea(TU) were synthesized and used as a fluorescent sensor for mercury ion detection.The TU-functionalized QDs were prepared by bonding TU via electrostatic interaction to the core/shell CdSe/CdS QDs after capping with thioglycolic acid(TGA).It was observed that the fluorescence of the functionalized QDs was quenched upon the addition of Hg~(2+).The quantitative detection of Hg~(2+) with this fluorescent sensor could be conducted based on the linear relationship between the extent of quenching and the concentration of Hg~(2+) added in the range of1-300 μg L~(-1).A detection limit of 0.56 μg L~(-1) was achieved.The sensor showed superior selectivity for Hg~(2+) and was successfully applied to the determination of mercury in environmental samples with satisfactory results.  相似文献   

17.
利用溶剂热法, 基于氢氧化钾的插层作用制备了荧光氮化碳量子点(g-C3N4 QDs). 所获得的氮化碳量子点具有良好的水溶性和荧光稳定性. 透射电子显微镜(TEM)照片显示, 氮化碳量子点的粒径约为2.3 nm; X射线光电子能谱(XPS)和红外光谱(FTIR)结果表明, 氮化碳量子点表面存在大量的亲水基团; 荧光发射光谱(PL)结果表明, 氮化碳量子点具有激发波长依赖性. 基于三价铁离子(Fe3+)对荧光氮化碳量子点荧光的猝灭现象, 构建了一种用于检测Fe3+的荧光传感器, 在Fe3+浓度为5~100 μmol/L范围内, 检测体系表现出良好的线性关系, 检出限约为0.5 μmol/L, 实现了对Fe3+的高效、 灵敏、 选择性检测.  相似文献   

18.
以3-巯基丙酸为稳定剂在水相中合成了Cu掺杂的ZnSe量子点(QDs), 并利用硫脲(CH4N2S)对其进行表面修饰, 制备出核壳结构的ZnSe:Cu/ZnS 量子点. 制得的量子点呈闪锌矿结构, 尺寸约为5 nm, 有较好的分散性, 其荧光发射峰在460 nm左右. 经CH4N2S修饰后, 量子点表面形成了宽禁带的ZnS包覆层, 将电子和空穴限域在了ZnSe:Cu 核内, 减少了表面发生非辐射复合的载流子, 显著提高了量子点的荧光强度. 与Na2S、硫代乙酰胺(TAA)等常用硫源相比, 以CH4N2S为硫源制得的ZnSe:Cu/ZnS 量子点壳层厚度可控, 表面钝化效果更好, 显示出更佳的荧光效率和稳定性. ZnSe:Cu/ZnS 量子点经过紫外线照射后消除了表面的悬空键, 进一步提高了其量子产率, 最终获到了具有较好荧光性质的ZnSe:Cu/ZnS量子点.  相似文献   

19.
Pulsed field gradient nuclear magnetic resonance (PFG NMR) experiments have been used to examine ligand exchange between poly(2-(N,N-dimethylamino)ethyl methacrylate) (PDMA) (Mn = 12,000, Mw/Mn = 1.20, Nn = 78) and trioctylphosphine oxide (TOPO) bound to the surface of CdSe/TOPO quantum dots (QDs). We show that PFG 1H NMR can quantify the displacement of TOPO by PDMA through its ability to differentiate signals due to TOPO bound to the QDs versus those from TOPO molecules free in solution. For CdSe QDs with a band edge absorption maximum at 558 nm (diameter 2.7 nm by transmission electron microscopy), we determined that, at saturation, 8 polymer chains on average displace greater than 90% of the surface TOPO groups. At partial saturation, with an average of 6 polymer chains/QD, each TOPO displaced requires 28 DMA repeat units. Assuming that one Me2N- group binds to a surface Cd2+ for each TOPO displaced, we infer that only about 3% of the DMA units are directly bound to the surface. The remaining groups are present as loops or tails that protrude into the solvent and increase the hydrodynamic diameter of the particles.  相似文献   

20.
A novel multifunctional microsphere with a fluorescent CdTe quantum dots (QDs) shell and a magnetic core (Fe(3)O(4)) has been successfully developed and prepared by a combination of the hydrothermal method and layer-by-layer (LBL) self-assembly technique. The resulting fluorescent Fe(3)O(4)@C@CdTe core/shell microspheres are utilized as a chemosensor for ultrasensitive Cu(2+) ion detection. The fluorescence of the obtained chemosensor could be quenched effectively by Cu(2+) ions. The quenching mechanism was studied and the results showed the existence of both static and dynamic quenching processes. However, static quenching is the more prominent of the two. The modified Stern-Volmer equation showed a good linear response (R(2) = 0.9957) in the range 1-10 μM with a quenching constant (K(sv)) of 4.9 × 10(4) M(-1). Most importantly, magnetic measurements showed that the Fe(3)O(4)@C@CdTe core/shell microspheres were superparamagnetic and they could be separated and collected easily using a commercial magnet in 10 s. These results obtained not only provide a way to solve the embarrassments in practical sensing applications of QDs, but also enable the fabrication of other multifunctional nanostructure-based hybrid nanomaterials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号