首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new method for simulating the motion of particles in viscoelastic Boger fluids is extended to problems with bounded geometries. Viscoelasticity is incorporated into the Stokesian dynamics method by modeling a viscoelastic fluid as a suspension of finite-extension nonlinear-elastic (FENE) dumbbells. Wall–particle and wall–bead interactions are included by using the image system method of Blake; particle–particle and particle–bead interactions are also modified by the presence of the wall. The method of incorporating sphere–wall interactions is verified by doing calculations for several problems involving particle–wall interactions in Newtonian fluids. The method is then used to study particle–wall interactions in viscoelastic dumbbell suspensions by examining several problems of interest: the sedimentation of a spherical particle near vertical and tilted walls; the sedimentation of a nonspherical particle between two flat plates; and the migration of a neutrally buoyant sphere in plane Poiseuille flow. We find that a single sphere falling near a wall moves toward the wall and exhibits anomalous rotation. When the wall is tilted by an amount less than a few degrees, the sphere still moves toward the wall, but tilting the wall greater than an angle of approximately 1.5° results in the sphere falling away from the wall. A nonspherical particle settling in a channel exhibits an oscillatory motion, but ultimately becomes centered in the channel with its long axis parallel to gravity. Finally, it is shown that a neutrally buoyant sphere in plane Poiseuille flow migrates to the channel center in wide channels, but migrates to the walls when the sphere is sufficiently large relative to the channel width.  相似文献   

2.
In this paper, the steady rotational motion of a slip sphere in a semi-infinite micropolar fluid is investigated. The sphere is assumed to rotate about a diameter perpendicular to an impermeable plane wall. The slip and spin boundary conditions are imposed on the spherical particle surface while on the plane wall surface the classical no-slip and no-spin conditions are utilized. A semi-analytical technique based on the principle of superposition together with a numerical method, called the collocation method, is employed to obtain the hydrodynamic torque acting on the spherical particle. Numerical results for the torque are obtained and illustrated graphically.  相似文献   

3.
Yung  K. L.  Xu  Yan 《Nonlinear dynamics》2003,33(1):33-41
A new set of expressions for the rollingfriction of a viscoelastic sphere rolling on a hard planeis derived. The new expressions take into considerationthe speed of rotation, the material relaxation time andother material characteristics. It is found that when therelaxation effect is not negligible, the relationshipbetween rolling friction and rolling speed is non-linear.The derivation of this model is based on the energy-equivalence method that gives a more comprehensiveconsideration of dominant parameters in the calculation.  相似文献   

4.
Tangential and radial velocity profiles were measured for the flow about a sphere rotating slowly in a Newtonian fluid, contained in a rectangular tank. Velocities were determined from enlarged streak photographs of aluminium particles moving in a collimated “sheet” of light, at several planes through the flow field. Similar velocity profiles were measured for the flow of a 1.50% Natrosol 250 H solution about two spheres of different diameters rotating in two different sized rectangular tanks. A set of velocity distributions were also measured for a sphere rotating in a 0.9% Natrosol 250 H solution. A dye tracer study of the flow about a sphere rotating in this liquid is presented as well. Both Natrosol solutions exhibited viscoelastic behaviour. The Newtonian fluid study was carried out at a Reynolds number of 1.2 and the viscoelastic fluid studies were within the Reynolds number range of 0.05–1.24.The zero shear viscosities of the Natrosol solutions were measured using the falling-sphere method. The non-Newtonian material parameters were obtained by fitting the theoretical curves to the measured velocity data. The values of the elastic and shear thinning parameters for the two liquids obtained in the different geometrical and dynamical situations are compared.  相似文献   

5.
Flow of viscoelastic fluid contained between a stationary outer sphere and a rotating inner sphere is studied experimentally. In the present investigation, relatively low-concentration polyacrylamide-water solutions are used as viscoelastic fluid, and for the sake of comparison glycerin-water solutions are used as the Newtonian fluid. In experiments, measurements of the rotational torque and the velocity profile in the meridional plane of the spherical gap are made. Various transition phenomena of flow modes that are unique to viscoelastic fluids are investigated by flow visualization for a wide range of rotational Reynolds numbers. Experimental results revealed that a roll-cell-like structure (banded radial structure) caused by elastic instability is generated in the polar region, and that it propagates toward the equatorial region when rotation of the inner sphere is increased, resulting in the formation of two distinct regions: the elastic dominant region and the inertial dominant region. Flow modes are classified and the critical Reynolds numbers are obtained for different gap widths. A correlation is obtained for the torque data in the regime before the onset of instability.  相似文献   

6.
For Newtonian fluids, the engineering predictions for pressure drop in turbulent pipe flow are well established. However, in the case of non-Newtonian liquids, only a few design techniques have been proposed and these do not share a common basis with the approach for Newtonian systems. This present work attempts to provide a common basis for both Newtonian and non-Newtonian systems in situations where anomalous wall effects are absent. Previously published experimental data suggest that if the Reynolds number is calculated on the basis of the apparent viscosity at the wall then the standard Newtonian correlations can be used for the prediction of pressure drop. The use of the wall viscosity in defining the Reynolds number also serves as a test for anomalous behaviour. Any departure of the experimental data from the Newtonian turbulent friction factor correlation indicates anomalous behaviour.  相似文献   

7.
Long waves on a viscoelastic film flow down a wavy inclined plane is investigated. The analysis is performed to see how long non-linear waves on viscoelastic film down an uneven inclined wall are deformed due to the non-uniformity of the basic flow. The results are then compared with those corresponding to Newtonian film down a wavy inclined wall as well as viscoelastic film down a plane inclined wall.  相似文献   

8.
Summary A theoretical analysis is made of the flow of an incompressible viscoelastic fluid contained between two concentric spheres when the outer sphere is moved instantaneously in a given direction, whilst the inner sphere remains at rest. The solution is developed by successive approximations, the first corresponding to the instantaneous slow flow of a Newtonian viscous fluid. By allowing the radius of the outer sphere to approach infinity, the result obtained can be used to give an approximate solution to the equations of motion of a visco-elastic fluid flowing slowly past a fixed sphere.  相似文献   

9.
This paper presents results obtained by employing a modified Galerkin finite element method to analyse the steady state flow of a fluid contained between two concentric, rotating spheres. The spheres are assumed to be rigid and the cavity region between the spheres is filled with an incompressible, viscous, Newtonian fluid. The inner sphere is constrained to rotate about a vertical axis with a prescribed angular velocity, while the outer sphere is fixed. Results for the circumferential function Ω, streamfunction ψ, vorticity function ζ and inner boundary torque T1 are presented for Reynolds numbers Re ? 2000 and radius ratios 0.1 ? α ? 0.9. The method proved effective for obtaining results for a wide range of radius ratios (0.1 ? α ? 0.9) and Reynolds numbers (0 ? Re ? 2000). Previous investigators who employed the finite difference method experienced difficulties in obtaining results for cases with radius ratios α ? 0.2, except for small Reynolds numbers (Re ? 100). Results for Ω, Ψ, ζ and T1 obtained in this study for radius ratios 0.8 ≤ α ≤ 0.9 verified the development of Taylor vortices reported by other investigators. The research indicates that the method may be useful for analysing other non-linear fluid flow problems.  相似文献   

10.
A theoretical study is presented for the two-dimensional creeping flow caused by a long circular cylindrical particle translating and rotating in a viscous fluid near a large plane wall parallel to its axis. The fluid is allowed to slip at the surface of the particle. The Stokes equations for the fluid velocity field are solved in the quasi-steady limit using cylindrical bipolar coordinates. Semi-analytical solutions for the drag force and torque acting on the particle by the fluid are obtained for various values of the slip coefficient associated with the particle surface and of the relative separation distance between the particle and the wall. The results indicate that the translation and rotation of the confined cylinder are not coupled with each other. For the motion of a no-slip cylinder near a plane wall, our hydrodynamic drag force and torque results reduce to the closed-form solutions available in the literature. The boundary-corrected drag force and torque acting on the particle decrease with an increase in the slip coefficient for an otherwise specified condition. The plane wall exerts the greatest drag on the particle when its migration occurs normal to it, and the least in the case of motion parallel to it. The enhancement in the hydrodynamic drag force and torque on a translating and rotating particle caused by a nearby plane wall is much more significant for a cylinder than for a sphere.  相似文献   

11.
The problem of a thin rod moving longitudinally along the axis of symmetry of a cylindrical vessel is examined for Newtonian and non-Newtonian liquids. For non-Newtonian fluids, the inelastic power-law type solution predicts the experimental results particularly well. On account of wall effects, the induced pressure gradients are much greater for a Newtonian fluid than for a viscoelastic fluid. In fact, in the latter case, they may be considered negligible when the radius of the inner cylinder is small compared to the one of the outer cylinder.  相似文献   

12.
Linear rheology of viscoelastic emulsions with interfacial tension   总被引:6,自引:17,他引:6  
Emulsions of incompressible viscoelastic materials are considered, in which the addition of an interfacial agent causes the interfacial tension to depend on shear deformation and variation of area. The average complex shear modulus of the medium accounts for the mechanical interactions between inclusions by a self consistent treatment similar to the Lorentz sphere method in electricity. The resulting expression of the average modulus includes as special cases the Kerner formula for incompressible elastic materials and the Oldroyd expression of the complex viscosity of emulsions of Newtonian liquids in time-dependent flow.  相似文献   

13.
We present a novel three-dimensional boundary-element formulation that fully characterizes the mechanical behavior of the external boundary of a multi-layered viscoelastic coating attached to a hard rotating spherical core. The proposed formulation incorporates both, the viscoelastic, and the inertial effects of the steady-state rolling motion of the sphere, including the Coriolis effect. The proposed formulation is based on Fourier-domain expressions of all mechanical governing equations. It relates two-dimensional Fourier series expansions of surface displacements and stresses, which results in the formation of a compliance matrix for the outer boundary of the deformable coating, discretized into nodes. The computational cost of building such a compliance matrix is optimized, based on configurational similarities and symmetry. The proposed formulation is applied, in combination with a rolling contact solving strategy, to evaluate the viscoelastic rolling friction of a coated sphere on a rigid plane. Steady-state results generated by the proposed model are verified by comparison to those obtained from running dynamic simulations on a three-dimensional finite element model, beyond the transient. A detailed application example includes a verification of convergence and illustrates the dependence of rolling resistance on the applied load, the thickness of the coating, and the rolling velocity.  相似文献   

14.
The viscoelastic-capillary model to predict approximately coating windows for the stable operations of viscoelastic coating liquids is derived using a lubrication approximation in slot coating processes. Pressure distributions and velocity profiles for viscoelastic liquids based on the Oldroyd-B and Phan-Thien and Tanner (PTT) models are solved in the coating bead region considering the Couette-Poiseuille flow feature and the pressure jumps at upstream and downstream menisci. Practical operating limits for the uniform coating of rheologically different liquids that are free from leaking and bead break-up defects are constructed under various conditions, incorporating the position of the upstream meniscus as an important indicator while determining limits. The shift of the uniform operating range shows different patterns for the Oldroyd-B liquid with a constant shear viscosity and the PTT liquid with a shear-thinning nature in comparison with the Newtonian case. The windows predicted by the simplified model are corroborated with experimental observations for one Newtonian and two viscoelastic liquids.  相似文献   

15.
A novel approach is presented to study the benchmark problem of flow around spheres in model dilute solutions of monodisperse samples of atactic polystyrene in di-octyl phthalate. Spheres are held stationary on flexible cantilevers of known spring-constant, k, while the polymer solutions are pumped past at controlled flow rates, allowing access to a wide range of Deborah number. In this way the non-Newtonian forces experienced by the spheres can be measured as a function of Deborah number, while detailed observations and measurements of birefringence are made, enabling assessment of macromolecular strain and orientation. In addition the flow field around a sphere has been measured in an a-PS solution. Experiments have been performed on a single sphere and on two spheres axially aligned in the direction of flow. The extensional flow around the downstream stagnation point of the single sphere is found to play a pivotal role in the development of molecular strain and stress, resulting in flow modification and subsequent non-Newtonian behaviour. The flow birefringence in the wake is found to modify severely the flow around a second, downstream, sphere, affecting the non-Newtonian forces encountered by the second sphere. This provides an explanation for the time interval dependent terminal velocity often observed when two spheres follow the same path through viscoelastic liquids.  相似文献   

16.
A characteristic equation is derived that describes the spatial decay of linear surface gravity waves on Maxwell fluids. Except at small frequencies, the derived dispersion relation is different from the temporal decay dispersion relation which is normally studied within fluid mechanics. The implications for waves on viscous Newtonian fluids using the two different dispersion relations is briefly discussed. The wave number is measured experimentally as function of the frequency in a horizontal canal. Seven Newtonian fluids and four viscoelastic liquids with constant viscosity have been used in the experiments. The spatial decay theory for Newtonian fluids fits well to the experimental data. The model and experiments are used to determine limits for the Maxwell fluid time numbers for the four viscoelastic liquids. As a result of low viscosity it was not possible within this study to obtain these time numbers from oscillatory experiments. Therefore, a comparison of surface gravity wave experiments with theory is applicable as a method to evaluate memory times of low viscosity viscoelastic fluids.  相似文献   

17.
To develop objective constitutive equations, local frames which translate and rotate with the fluid particle can be used. For example, the corotating frame rotates such that the curl of the velocity calculated in this frame vanishes. From the corotating frame, the Jaumann derivative can be derived. In this paper, a new local frame is developed which causes the cross product of the velocity and acceleration to vanish and is designated as the rigid-rotating frame. The corotating and rigid-rotating frames rotate identically for a rigid-body rotation of the fluid, but rotate differently in flows that contain shearing. This difference in rotation can be used to develop an objective rotation tensor that can be applied to constitutive equations for viscoelastic liquids. The rigid-rotating frame can also be used to develop a rheological time derivative which has been designated the rigid-rotating derivative. These new quantities expand the traditional set of kinematical variables and invariants available for use in constitutive equations. Use of this expanded set of kinematic variables is demonstrated in limiting constitutive equations. Received: 1 March 1999 Accepted: 5 March 1999  相似文献   

18.
When particles are dispersed in viscoelastic rather than Newtonian media, the hydrodynamics will be changed entailing differences in suspension rheology. The disturbance velocity profiles and stress distributions around the particle will depend on the viscoelastic material functions. Even in inertialess flows, changes in particle rotation and migration will occur. The problem of the rotation of a single spherical particle in simple shear flow in viscoelastic fluids was recently studied to understand the effects of changes in the rheological properties with both numerical simulations [D’Avino et al., J. Rheol. 52 (2008) 1331–1346] and experiments [Snijkers et al., J. Rheol. 53 (2009) 459–480]. In the simulations, different constitutive models were used to demonstrate the effects of different rheological behavior. In the experiments, fluids with different constitutive properties were chosen. In both studies a slowing down of the rotation speed of the particles was found, when compared to the Newtonian case, as elasticity increases. Surprisingly, the extent of the slowing down of the rotation rate did not depend strongly on the details of the fluid rheology, but primarily on the Weissenberg number defined as the ratio between the first normal stress difference and the shear stress.In the present work, a quantitative comparison between the experimental measurements and novel simulation results is made by considering more realistic constitutive equations as compared to the model fluids used in previous numerical simulations [D’Avino et al., J. Rheol. 52 (2008) 1331–1346]. A multimode Giesekus model with Newtonian solvent as constitutive equation is fitted to the experimentally obtained linear and nonlinear fluid properties and used to simulate the rotation of a torque-free sphere in a range of Weissenberg numbers similar to those in the experiments. A good agreement between the experimental and numerical results is obtained. The local torque and pressure distributions on the particle surface calculated by simulations are shown.  相似文献   

19.
In this paper, the frictionless rolling contact problem between a rigid sphere and a viscoelastic half-space containing one elastic inhomogeneity is solved. The problem is equivalent to the frictionless sliding of a spherical tip over a viscoelastic body. The inhomogeneity may be of spherical or ellipsoidal shape, the later being of any orientation relatively to the contact surface. The model presented here is three dimensional and based on semi-analytical methods. In order to take into account the viscoelastic aspect of the problem, contact equations are discretized in the spatial and temporal dimensions. The frictionless rolling of the sphere, assumed rigid here for the sake of simplicity, is taken into account by translating the subsurface viscoelastic fields related to the contact problem. Eshelby's formalism is applied at each step of the temporal discretization to account for the effect of the inhomogeneity on the contact pressure distribution, subsurface stresses, rolling friction and the resulting torque. A Conjugate Gradient Method and the Fast Fourier Transforms are used to reduce the computation cost. The model is validated by a finite element model of a rigid sphere rolling upon a homogeneous vciscoelastic half-space, as well as through comparison with reference solutions from the literature. A parametric analysis of the effect of elastic properties and geometrical features of the inhomogeneity is performed. Transient and steady-state solutions are obtained. Numerical results about the contact pressure distribution, the deformed surface geometry, the apparent friction coefficient as well as subsurface stresses are presented, with or without heterogeneous inclusion.  相似文献   

20.
A mathematical derivation of the porosity (local void fraction) distribution near the walls of packed beds of uniform spheres is presented. This investigation supports the study of methods of reducing or eliminating the so-called wall effect, or bypass flow, which accompanies the increase in porosity when spheres come in contact with a solid boundary. Limiting the amount of bypass flow is important in certain applications such as in packed bed nuclear reactors where bypass flow allows some coolant to avoid the high power density core region. Four basic porosity distributions are determined. The first investigates the case where spheres against a flat wall are packed in the tightest possible packing density. This density is then reduced by changing the sphere spacing until the minimum porosity matches that obtained experimentally. In the other cases, the effect of various ways of embedding spheres in the wall on the wall region porosity is examined. By partially embedding spheres in the wall, the porosity at the wall is reduced and the most direct cause of the bypass flow is thereby eliminated. The porosity is found by evaluating the ratio of the solid area to total area in a plane which is parallel to the wall. The local porosity is derived as a function of distance from the wall in the region within one-half a sphere diameter from the wall. The average porosity of the wall region is also calculated. This research has application to flow situations such as packed bed chemical reactors, pebble bed nuclear reactors and flow in packed beds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号