首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The rate coefficients of H-abstraction reactions of butene isomers by the OH radical were determined by both canonical variational transition-state theory and transition-state theory, with potential energy surfaces calculated at the CCSD(T)/6-311++G(d,p)//BH&HLYP/6-311G(d,p) level and CCSD(T)/6-311++G(d,p)//BH&HLYP/cc-pVTZ level and quantum mechanical tunneling effect corrected by either the small-curvature tunneling method or the Eckart method. While 1-butene contains allylic, vinylic, and alkyl hydrogens that can be abstracted to form different butene radicals, results reveal that s-allylic H-abstraction channels have low and broad energy barriers, and they are the most dominant channels which can occur via direct and indirect H-abstraction channels. For the indirect H-abstraction s-allylic channel, the reaction can proceed via forming two van der Waals prereactive complexes with energies that are 2.7-2.8 kcal mol(-1) lower than that of the entrance channel at 0 K. Assuming that neither mixing nor crossover occurs between different reaction pathways, the overall rate coefficient was calculated by summing the rate coefficients of the s-allyic, methyl, and vinyl H-abstraction paths and found to agree well with the experimentally measured OH disappearance rate. Furthermore, the rate coefficients of p-allylic H abstraction of cis-2-butene, trans-2-butene, and isobutene by the OH radical were also determined at 300-1500 K, with results analyzed and compared with available experimental data.  相似文献   

2.
Gas-phase energies of 36 tautomer/isomer pairs of 18 six-membered N-heterocyclic compounds were computed quantum chemically. Among the considered B3LYP, BH&HLYP, BH&HLYP(G), and PW6B95 DFT functionals, the latter two provide accurate tautomer/isomer pair energies with root-mean-square deviations (rmsd) relative to experiments of 0.2 and 0.3 kcal/mol, respectively. Since only few (namely five) experimental data are available, 15 tautomer/isomer pair energies were computed with the very precise QCISD(T)(quadruple-ζ) method serving as reference. Relative to this reference the PW6B95 DFT functional is slightly superior to the BH&HLYP(G) functional, yielding an rmsd of 0.7 and 0.8 kcal/mol, respectively. In contrast to BH&HLYP(G), the PW6B95 DFT functional yields also accurate tautomer/isomer pair energies if zwitterionic structures are involved. The tautomer/isomer pair states possess different amounts of aromaticity. This is characterized by nucleus-independent chemical shift (NICS) values. The tautomer/isomer pair reference energies, from which the energies computed with PW6B95 are subtracted, correlate linearly with the corresponding differences in the NICS values. This correlation is used to construct a correction term for the pair energies computed with PW6B95, yielding tautomer/isomer pair energies with rmsd of 0.3 kcal/mol with respect to the more CPU time demanding QCISD(T)(quadruple-ζ) method.  相似文献   

3.
In spite of the potential importance of the HCS radical in both combustion and interstellar processes, its chemical reactivity has not been tackled previously. In the present paper, the oxidation reaction of the HCS radical is theoretically investigated for the first time at the CCSD(T)/6-311++G(3df,2p)//BH&HLYP/6-311++G(d,p)+ZPVE and Gaussian-3//B3LYP/6-31G(d) levels. It is shown that the most feasible pathway is the O2 addition to the HCS radical forming the intermediate SC(H)OO which can undergo a subsequent O-extrusion leading to SC(H)O + 3O. This features an indirect O-transfer mechanism with the overall barrier of 4.4 and 3.5 kcal mol(-1), respectively, at the two levels. However, formation of the H-transfer product CS + HO2 is kinetically much less feasible, i.e., the direct mechanism has barriers of 14.3 and 8.7 kcal mol(-1), whereas the indirect mechanism has barriers of 12.6 and 10.7 kcal mol(-1), respectively. This result is in sharp contrast to the analogous HCO + O2 reaction, where the direct (with a barrier of 2.98 kcal mol(-1)) and indirect (2.26 kcal mol(-1)) H-transfer processes are highly competitive over the indirect O-transfer process (the least endothermicity is 19.9 kcal mol(-1)). The possible explanations and implications of the present results are provided.  相似文献   

4.
Ab initio calculations at MP2/6-311++G(2d,2p) and MP2/6-311++G(3df,3pd) computational levels have been used to analyze the interactions between nitrous oxide and a series of small and large molecules that act simultaneously as hydrogen bond donors and electron donors. The basis set superposition error (BSSE) and zero point energy (ZPE) corrected binding energies of small N2O complexes (H2O, NH3, HOOH, HOO*, HONH2, HCO2H, H2CO, HCONH2, H2CNH, HC(NH)NH2, SH2, H2CS, HCSOH, HCSNH2) vary between -0.93 and -2.90 kcal/mol at MP2/6-311++G(3df,3pd) level, and for eight large complexes of N2O they vary between -2.98 and -3.37 kcal/mol at the MP2/6-311++G(2d,2p) level. The most strongly bound among small N2O complexes (HCSNH2-N2O) contains a NH..N bond, along with S-->N interactions, and the most unstable (H2S-N2O) contains just S-->N interactions. The electron density properties have been analyzed within the atoms in molecules (AIM) methodology. Results of the present study open a window into the nature of the interactions between N2O with other molecular moieties and open the possibility to design N2O abiotic receptors.  相似文献   

5.
Polyhedral water clusters (PWCs) are cage-like (H2O)n clusters where every O participates in exactly three H bonds. For a database of 83 PWCs, 8 < or = n < or = 20, geometry was optimized and zero point energy (ZPE) was calculated at the B3LYP/6-311++G** level. ZPE correlates negatively with electronic energy (E0): each increase of 1 kcal/mol in E0 corresponds to a decrease of about 0.11 kcal/mol in ZPE. For each n, a set of four connectivity parameters accounts for 98% or more of the variance in ZPE. Linear regression of ZPE against n and this set gives an RMS error of 0.13 kcal/mol. The contributions to ZPE from stretch modes only (ZPE(S)) and from torsional modes only (ZPE(T)) also correlate strongly with E0 and with each other.  相似文献   

6.
We made ab initio electronic calculations of the structure and energetics of mixed hypermetalated hydrogen oxides, Li2NaOH and LiNa2OH. There exist five equilibrium geometries for each complex. In all levels of calculation the global minimum structure for Li2NaOH has C2v symmetry and a large distance between sodium and oxygen, 4.24 Å (MP2/6-31G*). The dissociation energies to all possible products were also calculated. Li2NaOH → Na + Li2OH δH = +25.33 kcal/mol (at MP4/6-311++G**//6-31G* + ZPE scaled by 0.9). All other dissociation processes are highly endothermic. Similar procedures were applied to LiNa2OH. The global minimum structure for LiNa2OH belongs to point group Cs. It is also endothermic to all possible dissociation paths. LiNa2OH →Na + LiNaOH δH = +12.72 kcal/mol (at MP4/6-311++G*//6-31G* + ZPE scaled by 0.9). The nuclear repulsion energy is crucial in energetics of the structures. The distribution of electron density and bonding properties for these equilibrium structures were analyzed.  相似文献   

7.
Six fully optimized structures of the aza-calix[2]arene[2]-triazines/RDX supramo-lecular complexes have been obtained at the DFT-B3LYP/6-311++G** level,and the corresponding intermolecular interactions have been investigated using the B3LYP,mPWPW91 and MP2 methods at the 6-311++G** level,respectively.The natural bond orbital(NBO) and atoms in molecules(AIM) analyses have been performed to reveal the origin of interactions.To our interest,the result indicates that the strongest interaction is up to -22.34 kJ/mol after basis set superposition error(BSSE) and zero point energy(ZPE) correction at the MP2/6-311++G** level.Furthermore,the intermolecular interactions between aza-calix[2]arene[2]-triazines with the substituted amidos and RDX are stronger than those of other complexes.Thus,the complexes with amidos can be used as the candidates to increase the stability of explosive and eliminate the explosive wastewater.  相似文献   

8.
Various hybrid functionals (B3LYP, B97-2, PBE0, BMK, BH&HLYP, CAM-B3LYP, and LC-ωPBE) implemented in density functional theory were applied to give estimate of static first hyperpolarizabilty (β(0)) of (E)-benzaldehyde phenylhydrazone designated as (E)-BPH. Against those of MP2 computations as a function of the underlying density functional, good agreement was obtained with the BH&HLYP and CAM-B3LYP functionals. The LC-ωPBE functional and the B3LYP, PBE0, B97-2, and BMK functionals underestimated and overestimated β(0), respectively. The basis set effect on the calculated β(0) was also investigated. It turned out that the 6-311+G(2d,p) basis set provided excellent converged value of β(0). On the basis of the calculated results, we investigated the substituent effect on β(0) of donor-acceptor (D-A) substituted (E)-BPH systematically by using the BH&HLYP and CAM-B3LYP computations with the 6-311+G(2d,p) basis set. We proposed a Zwitterion structure to explain the calculated trend in the substituent effect and the enhanced hyperpolarizability of type II compounds (A-(E)-BPH-D) than type I compounds (D-(E)-BPH-A). Natural bonding orbital analysis carried out at BH&HLYP/6-311+G(2d,p)//B3LYP/6-31G(2df,p) level of theory substantiated the claim.  相似文献   

9.
A theoretical quantum chemical study of the intramolecular hydrogen bonding interactions in 8-mercaptoquinoline has been carried out. Special attention has been paid to the rotation of S-H bond and intramolecular proton-transfer reactions. Therewith, the B3LYP/6-311++G(d,p), B3LYP/6-31+G(2d,2p), MPW1K/6-311++G(d,p), MPW1K/6-31+G(2d,2p), BH&HLYP/6-311++G(d,p), and G96LYP/6-311++G(d,p) methods have been used. By means of the Onsager and PCM reaction field methods, the effects of solvent on hydrogen-bond energies, conformational equilibria, rotational barriers, and tautomerism in aqueous solution have been studied. These simulations were done at the MPW1K/6-311++G(d,p) and B3LYP/6-311++G(d,p) levels. Natural-bond orbital analysis has been performed to study the intramolecular hydrogen bond (IHB) in the gaseous phase and in aqueous medium. The stability of forms under consideration in solution does not coincide with that in the gaseous phase, underlining a great importance of the electrostatic influence of solvent. Double-proton transfer in the prototropic tautomerization of 8-mercaptoquinoline, one water molecule complex in the gaseous phase and in solution, has been systematically studied. The double-proton transfer occurs concertedly and synchronously. The water-assisted tautomerization is kinetically less, but thermodynamically more favorable, compared to that of the single-proton transfer. As in the case with single-proton transfer, for water-assisted reaction, the tautomerization energies and barrier heights decrease with the increase in dielectric constant, which implies faster and more complete tautomerization of 8-mercaptoquinoline in a polar solvent.  相似文献   

10.
Parts of the potential energy surface of the title process and related processes have been investigated at the SCF /6-31G **, SCF /6-31++G **, and MP 2/6-31++G ** levels. The investigated reaction is exothermic (?6.23 kcal/mol, MP 4/6-31++G **//MP 2/6–31++G** level, ZPE included): A linear intermediate radical anion, Li? H? Li? H??, is significantly stabilized with respect to LiH + LiH?? (?38.74 kcal/mol, the same level as above). The BSSE at MP 2/6–31++G **//MP 2/6–31++G ** amounts to 1.8 kcal/mol. The title process seems to be suitable for experimental study in molecular beams.  相似文献   

11.
The potential energy surface (PES) for the HOBr.H(2)O complex has been investigated using second- and fourth-order M?ller-Plesset perturbation theory (MP2, MP4) and coupled cluster theory with single and doubles excitations (CCSD), and a perturbative approximation of triple excitations (CCSD-T), correlated ab initio levels of theory employing basis sets of triple zeta quality with polarization and diffuse functions up to the 6-311++G(3dp,3df ) standard Pople's basis set. Six stationary points being three minima, two first-order transition state (TS) structures and one second-order TS were located on the PES. The global minimum syn and the anti equilibrium structure are virtually degenerated [DeltaE(ele-nuc) approximately 0.3 kcal mol(-1), CCSD-T/6-311++G(3df,3pd) value], with the third minima being approximately 4 kcal mol(-1) away. IRC analysis was performed to confirm the correct connectivity of the two first-order TS structures. The CCSD-T/6-311++G(3df,3pd)//MP2/6-311G(d,p) barrier for the syn<-->anti interconversion is 0.3 kcal mol(-1), indicating that a mixture of the syn and anti forms of the HOBr.H(2)O complex is likely to exist.  相似文献   

12.
The dimers formed by formic acid (FA) and furan are investigated by ab initio methods and matrix isolation spectroscopy. Nine complexes with binding energies between -3.91 and -0.82 kcal/mol (MP2/6-311++G(d,p) + ZPE + BSSE) are identified. Another five weaker bound complexes are localized at lower level of theory only. The binding in the furan-FA dimers can be described in terms of OH...O, C=O...H, HO...H, CH...O, OH...pi, and CH...pi interactions. Therefore, the furan-FA complexes are classified in two types: (1) the dimers where the OH hydrogen of formic acid interacts with the furan molecule and (2) the dimers where the main interactions of FA with the furan molecule are via the less acidic CH hydrogen. Duning's and Pople's triple and double basis sets were used to study the dependence of the geometries and energies of the complexes from the basis set. BSSE (basis set superposition error) counterpoise corrections (CP) were included during the geometry optimizations of all dimers at the MP2/6-31G(d,p) level of theory. Matrix isolation spectroscopy allowed us to record the IR spectrum of aggregates between FA and furan. By comparison of the experimental IR spectrum with calculated IR spectra of a variety of complexes, it was possible to identify the most stable furan-FA dimer as the major product of the aggregation.  相似文献   

13.
The electronic structure and thermochemical stability of the HOX-SO(3) (X = F, Cl, Br) complexes is studied using second-order M?ller-Plesset perturbation theory (MP2). The calculated dissociation energies of the HOF-SO(3), HOCl-SO(3), and HOBr-SO(3) complexes are 5.43, 6.02, and 5.98 kcal mol(-1) at MP2/6-311++G(3df,3pd) level, respectively. Anharmonic OH stretching frequencies of the HOX (X = F, Cl, Br) moieties along with the frequency shifts upon complex formation are calculated at the MP2/6-311++G(2df,2p) level. AIM and NBO analyses were also performed. Theoretical data strongly encourage performing of matrix-isolation studies of the title complexes and their spectroscopic identification.  相似文献   

14.
The mechanisms of the reactions of W and W+ with COx (x=1, 2) were studied at the CCSD(T)/[SDD+6-311G(d)]//B3LYP/[SDD+6-31G(d)] level of theory. It was shown that the gas-phase reaction of W with CO2 proceeds with a negligible barrier via an insertion pathway, W(7S)+CO2(1A1)-->W(eta2-OCO)(6A')-->OW(eta1-CO)(1A)-->WO (3Sigma+)+CO(1Sigma). This oxidation process is calculated to be exothermic by 32.4 kcal/mol. Possible intermediates of this reaction are the W(eta2-OCO) and OWCO complexes, among which the latter is 37.4 kcal/mol more stable and lies 39.7 and 7.3 kcal/mol lower than the reactants, W(7S)+CO2(1A1), and the products, WO (3Sigma+)+CO(1Sigma), respectively. The barrier separating W(eta2-OCO) from OWCO is 8.0 kcal/mol (relative to the W(eta2-OCO) complex), which may be characterized as a W+delta-(CO2)-delta charge-transfer complex. Ionization of W does not change the character of the reaction of W with CO2: the reaction of W+ with CO2, like its neutral analog, proceeds via an insertion pathway and leads to oxidation of the W-center. The overall reaction W+(6D) + CO2(1A1)-->W(eta1-OCO)+(6A)-->OW(eta1-CO)+(4A)-->WO+(4Sigma+)+CO(1Sigma) is calculated to be exothermic by 25.4 kcal/mol. The cationic reaction proceeds with a somewhat large (9.9 kcal/mol) barrier and produces two intermediates, W(eta1-OCO)+(6A) and OW(eta1-CO)+(4A). Intermediate W(eta1-OCO)+(6A) is 20.0 kcal/mol less stable than OW(eta1-CO)+(4A), and separated from the latter by a 35.2 kcal/mol barrier. Complex W(eta1-OCO)+(6A) is characterized as an ion-molecular complex type of W+-(CO2). Gas-phase reactions of M=W/W+ with CO lead to the formation of a W-carbonyl complex M(eta1-CO) for both M=W and W+. The C-O insertion product, OMC, lies by 5.2 and 69.3 kcal/mol higher than the corresponding M(eta1-CO) isomer, for M=W and W+, respectively, and is separated from the latter by a large energy barrier.  相似文献   

15.
The gas phase and solvent dependent preference of the tautomerization between 2-pyridinethiol (2SH) and 2-pyridinethione (2S) has been assessed using variable temperature Fourier transform infrared (FTIR) experiments, as well as ab initio and density functional theory computations. No spectroscopic evidence (nu(S)(-)(H) stretch) for 2SH was observed in toluene, C(6)D(6), heptane, or methylene chloride solutions. Although, C(s)() 2SH is 2.61 kcal/mol more stable than C(s)() 2S (CCSD(T)/cc-pVTZ//B3LYP/6-311+G(3df,2p)+ZPE), cyclohexane solvent-field relative energies (IPCM-MP2/6-311+G(3df,2p)) favor 2S by 1.96 kcal/mol. This is in accord with the FTIR observations and in quantitative agreement with the -2.6 kcal/mol solution (toluene or C(6)D(6)) calorimetric enthalpy for the 2S/2SH tautomerization favoring the thione. As the intramolecular transition state for the 2S, 2SH tautomerization (2TS) lies 25 (CBS-Q) to 30 kcal/mol (CCSD/cc-pVTZ) higher in energy than either tautomer, tautomerization probably occurs in the hydrogen bonded dimer. The B3LYP/6-311+G(3df,2p) optimized C(2) 2SH dimer is 10.23 kcal/mol + ZPE higher in energy than the C(2)(h)() 2S dimer and is only 2.95 kcal/mol + ZPE lower in energy than the C(2) 2TS dimer transition state. Dimerization equilibrium measurements (FTIR, C(6)D(6)) over the temperature range 22-63 degrees C agree: K(eq)(298) = 165 +/- 40 M(-)(1), DeltaH = -7.0 +/- 0.7 kcal/mol, and DeltaS = -13.4 +/- 3.0 cal/(mol deg). The difference between experimental and B3LYP/6-311+G(3df,2p) [-34.62 cal/(mol deg)] entropy changes is due to solvent effects. The B3LYP/6-311+G(3df,2p) nucleus independent chemical shifts (NICS) are -8.8 and -3.5 ppm 1 A above the 2SH and 2S ring centers, respectively, and the thiol is aromatic. Although the thione is not aromatic, it is stabilized by the thioamide resonance. In solvent, the large 2S dipole, 2-3 times greater than 2SH, favors the thione tautomer and, in conclusion, 2S is thermodynamically more stable than 2SH in solution.  相似文献   

16.
Quantum chemistry calculations at the density functional theory (DFT) (B3LYP), MP2, QCISD, QCISD(T), and CCSD(T) levels in conjunction with 6-311++G(2d,2p) and 6-311++G(2df,2p) basis sets have been performed to explore the binding energies of open-shell hydrogen bonded complexes formed between the HOCO radical (both cis-HOCO and trans-HOCO) and trans-HCOOH (formic acid), H(2)SO(4) (sulfuric acid), and cis-cis-H(2)CO(3) (carbonic acid). Calculations at the CCSD(T)∕6-311++G(2df,2p) level predict that these open-shell complexes have relatively large binding energies ranging between 9.4 to 13.5 kcal∕mol and that cis-HOCO (cH) binds more strongly compared to trans-HOCO in these complexes. The zero-point-energy-corrected binding strengths of the cH?Acid complexes are comparable to that of the formic acid homodimer complex (~13-14 kcal∕mol). Infrared fundamental frequencies and intensities of the complexes are computed within the harmonic approximation. Infrared spectroscopy is suggested as a potential useful tool for detection of these HOCO?Acid complexes in the laboratory as well as in various planetary atmospheres since complex formation is found to induce large frequency shifts and intensity enhancement of the H-bonded OH stretching fundamental relative to that of the corresponding parent monomers. Finally, the ability of an acid molecule such as formic acid to catalyze the inter-conversion between the cis- and trans-HOCO isomers in the gas phase is also discussed.  相似文献   

17.
A theoretical study of the mechanism and kinetics of the OH hydrogen abstraction from hydroxyacetone is presented. Optimum geometries and frequencies have been computed at the BH and HLYP/6-311++G(d,p) level of theory for all stationary points. Energy values have been improved by single-point calculations at the above geometries using CCSD(T)/ 6-311++G(d,p). The rate coefficients are calculated for the temperature range 280-500 K by using conventional transition state theory (TST), including tunneling corrections. Our analysis supports a stepwise mechanism involving the formation of a reactant complex in the entrance channel and a product complex in the exit channel, for all the modeled paths. Four experimental values of the rate constant at 298 K have been previously reported: three of them in great agreement (approximately 3 x 10(-12) cm(3) molecule(-1) s(-1)), and one of them twice larger. The calculations in the present work support the smaller value. A curved Arrhenius plot was found in the studied temperature range; thus the expression that best describes the obtained data is k(280-500)(overall) = 5.29 x 10(-23)T(3.4)e(1623/T) cm(3) molecule(-1) s(-1). The activation energy was found to vary with temperature from -1.33 to +0.15 kcal/mol.  相似文献   

18.
The conformational free energies for some 2-substituted butanes where X = F, Cl, CN, and CCH were calculated using G3-B3, CBS-QB3, and CCSD(T)/6-311++G(2d,p) as well as other theoretical levels. The above methods gave consistent results with free energies relative to the trans conformers as follows: X = CCH, g+ = 0.77 +/- 0.05 kcal/mol. g- = 0.88 +/- 0.05 kcal/mol; X = CN, g+ = 0.85 +/- 0.05 kcal/mol, g- = 0.75 +/- 0.05 kcal/mol; X = Cl, g+ = 0.70 +/- 0.05 kcal/ml, g- = 0.80 +/- 0.05 kcal/mol; and X = F, g+ = 0.53 +/- 0.05 kcal/mol, g- = 0.83 +/- 0.05 kcal/mol. The conformational free energies also were estimated using the observed liquid phase IR spectra and intensities calculated using B3LYP/6-311++G** and MP2/6-311++G**. The rotational free energy profiles for all of the compounds were estimated at the G3-B3 level.  相似文献   

19.
运用B3LYP和MP2方法在6-311++G(d,p)基组水平上, 对H2CO-XY(XY=F2、Cl2、Br2、ClF、BrF、BrCl)卤键体系进行构型全优化, 得到了O…X—Y型卤键复合物. 结果表明, MP2/6-311++G(d,p)计算结果与实验值较吻合. 并在MP2水平下计算了分子间的相互作用能, 用完全均衡校正CP(counterpoise procedure)方法对基函数重叠误差(BSSE)进行了校正. 利用电子密度拓扑分析方法对卤键复合物的电子密度拓扑性质进行了分析研究.  相似文献   

20.
The doublet potential energy surface of radical system [C(2), H(2), P] is investigated at the UB3LYP/6-311++G(d,p) and UCCSD(T)/6-311++G(2df,2p) (single-point) levels. Eight chainlike and three-membered ring structures are located as energy minima connected by 10 interconversion transition states. At the final UCCSD(T)/6-311++G(2df,2p)//UB3LYP/6-311++G(d,p) level with zero-point vibrational energy correction, species CH(2)CP is found to be thermodynamically the most stable isomer followed by HCCPH, H-cCPC-H, cPCC-H(H), H-cCCP-H, cis-CC(H)PH, trans-CC(H)PH, and CCPH(2) at 11.01, 12.57, 40.07, 43.63, 50.25, 56.82, and 65.36 kcal/mol, respectively. The computed results indicate that the chainlike isomers CH(2)CP and HCCPH and cyclic radical H-cCPC-H possess considerable kinetic stability at extra low pressures and temperatures. Interestingly, radical CCPH(2), whose energy is the highest in all predicted CH(2)CP isomers, can be also regarded as a kinetically stable species with the smallest isomerization barrier of 22.26 kcal/mol at extra low pressures and temperatures. Therefore, considering higher kinetic stability, in addition to the microwave spectroscopy characterized isomer CH(2)CP in previous experiments, the species HCCPH, H-cCPC-H, and CCPH(2) should be considered as excellent candidates for possible experimental observation. Furthermore, the structural nature of stable radical isomers is discussed based on bonding characteristics, single electron spin distribution, and comparison with their analogues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号