首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Programming the synthesis and self‐assembly of molecules is a compelling strategy for the bottom‐up fabrication of ordered materials. To this end, shape‐persistent macrocycles were designed with alternating carbazoles and triazoles to program a one‐pot synthesis and to bind large anions. The macrocycles bind anions that were once considered too weak to be coordinated, such as PF6?, with surprisingly high affinities (β2=1011 M ?2 in 80:20 chloroform/methanol) and positive cooperativity, α=(4 K2/K1)=1200. We also discovered that the macrocycles assemble into ultrathin films of hierarchically ordered tubes on graphite surfaces. The remarkable surface‐templated self‐assembly properties, as was observed by using scanning tunneling microscopy, are attributed to the complementary pairing of alternating triazoles and carbazoles inscribed into both the co‐facial and edge‐sharing seams that exist between shape‐persistent macrocycles. The multilayer assembly is also consistent with the high degree of molecular self‐association observed in solution, with self‐association constants of K=300 000 M ?1 (chloroform/methanol 80:20). Scanning tunneling microscopy data also showed that surface assemblies readily sequester iodide anions from solution, modulating their assembly. This multifunctional macrocycle provides a foundation for materials composed of hierarchically organized and nanotubular self‐assemblies.  相似文献   

2.
10α,20α‐Bis(4‐nitrophenyl)calix[4]pyrrole ( 1 ) forms 1:1 complexes with anions of selected aromatic hydroxy acids in which the host orientation within the guest is controlled by a change in the pH value. Some bis‐anionic guests, including those obtained from 4‐hydroxybenzoic acid, 1,4‐ and 1,3‐benzenedicarboxylic acids, induce the self‐assembly of molecular capsules involving two molecules of the receptor. 1H NMR data and solid‐state structures of the 1:1 complex of 1 with p‐C6H4(COOH)(COO?)+NMe4 and the 2:1 capsule [( 1 )2m‐C6H4(COO?)2(+NMe4)2] provide structural details in solution and in the solid state.  相似文献   

3.
We have succeeded in constructing a metal–organic framework (MOF), [Cu(bpdc)(H2O)2]n (H2bpdc=2,2′‐bipyridyl‐3,3′‐dicarboxylic acid, 1 ), and two poly‐POM–MOFs (POM=polyoxometalate), {H[Cu(Hbpdc)(H2O)2]2[PM12O40] ? n H2O}n (M=Mo for 2 , W for 3 ), by the controllable self‐assembly of H2bpdc, Keggin‐anions, and Cu2+ ions based on electrostatic and coordination interactions. Notably, these three compounds all crystallized in the monoclinic space group P21/n, and the Hbpdc? and bpdc2? ions have the same coordination mode. Interestingly, in compounds 2 and 3 , Hbpdc? and the Keggin‐anion are covalently linked to the transition metal copper at the same time as polydentate organic ligand and as polydentate inorganic ligand, respectively. Complexes 2 and 3 represent new and rare examples of introducing the metal N‐heterocyclic multi‐carboxylic acid frameworks into POMs, thereby, opening a pathway for the design and the synthesis of multifunctional hybrid materials based on two building units. The Keggin‐anions being immobilized as part of the metal N‐heterocyclic multi‐carboxylic acid frameworks not only enhance the thermal stability of compounds 2 and 3 , but also introduce functionality inside their structures, thereby, realizing four approaches in the 1D hydrophilic channel used to engender proton conductivity in MOFs for the first time. Complexes 2 and 3 exhibit good proton conductivity (10?4 to ca. 10?3 S cm?1) at 100 °C in the relative humidity range 35 to about 98 %.  相似文献   

4.
The colorimetric detection of anionic species has been studied for α‐amino acid‐conjugated poly(phenylacetylene)s, which were prepared by the polymerization of the ethyl esters of N‐(4‐ethynylphenylsulfonyl)‐L ‐alanine, L ‐isoleucine, L ‐valine, L ‐phenylalanine, L ‐aspartic acid, and L ‐glutamic acid using Rh+(2,5‐norbornadiene)[(η6‐C6H5)B?(C6H5)3] as the catalyst in CHCl3. The one‐handed helical conformations of all the sulfonamide‐functionalized polymers were characterized by Cotton effects in the circular dichroism spectra. The addition of anions with a relatively high basicity, such as tetra‐n‐butylammonium acetate and fluoride, induced drastic changes in both the optical and chiroptical properties. On the other hand, anions with a relatively low basicity, such as tetra‐n‐butylammonium nitrate, azide, and bromide, had essentially no effects on the helical conformation of all the sulfonamide‐functionalized polymers. The anion signaling property of the sulfonamide‐functionalized polymers possessing α‐amino acid moieties was significantly affected by the installed residual amino acid structures. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1683–1689, 2010  相似文献   

5.
Anion–π interactions have been widely studied as new noncovalent driving forces in supramolecular chemistry. However, self‐assembly induced by anion–π interactions is still largely unexplored. Herein we report the formation of supramolecular amphiphiles through anion–π interactions, and the subsequent formation of self‐assembled vesicles in water. With the π receptor 1 as the host and anionic amphiphiles, such as sodium dodecylsulfate (SDS), sodium laurate (SLA), and sodium methyl dodecylphosphonate (SDP), as guests, the sequential formation of host–guest supramolecular amphiphiles and self‐assembled vesicles was demonstrated by SEM, TEM, DLS, and XRD techniques. The intrinsic anion–π interactions between 1 and the anionic amphiphiles were confirmed by crystal diffraction, HRMS analysis, and DFT calculations. Furthermore, the controlled disassembly of the vesicles was promoted by competing anions, such as NO3?, Cl?, and Br?, or by changing the pH value of the medium.  相似文献   

6.
A series of metal–organic frameworks based on a flexible, highly charged Bpybc ligand, namely 1? Mn?OH?, 2? Mn?SO42?, 3? Mn?bdc2?, 4? Eu?SO42? (H2BpybcCl2=1,1′‐bis(4‐carboxybenzyl)‐4,4′‐bipyridinium dichloride, H2bdc=1,4‐benzenedicarboxylic acid) have been obtained by a self‐assembly process. Single‐crystal X‐ray‐diffraction analysis revealed that all of these compounds contained the same n‐fold 2D→3D Borromean‐entangled topology with irregular butterfly‐like pore channels that were parallel to the Borromean sheets. These structures were highly tolerant towards various metal ions (from divalent transition metals to trivalent lanthanide ions) and anion species (from small inorganic anions to bulky organic anions), which demonstrated the superstability of these Borromean linkages. This non‐interpenetrated entanglement represents a new way of increasing the stability of the porous frameworks. The introduction of bipyridinium molecules into the porous frameworks led to the formation of cationic surface, which showed high affinities to methanol and water vapor. The distinct adsorption and desorption isotherms of methanol vapor in four complexes revealed that the accommodated anion species (of different size, shape, and location) provided a unique platform to tune the environment of the pore space. Measurements of the adsorption of various organic vapors onto framework 1? Mn?OH? further revealed that these pores have a high adsorption selectivity towards molecules with different sizes, polarities, or π‐conjugated structures.  相似文献   

7.
Traditional micelle self‐assembly is driven by the association of hydrophobic segments of amphiphilic molecules forming distinctive core–shell nanostructures in water. Here we report a surprising chaotropic‐anion‐induced micellization of cationic ammonium‐containing block copolymers. The resulting micelle nanoparticle consists of a large number of ion pairs (≈60 000) in each hydrophobic core. Unlike chaotropic anions (e.g. ClO4?), kosmotropic anions (e.g. SO42?) were not able to induce micelle formation. A positive cooperativity was observed during micellization, for which only a three‐fold increase in ClO4? concentration was necessary for micelle formation, similar to our previously reported ultra‐pH‐responsive behavior. This unique ion‐pair‐containing micelle provides a useful model system to study the complex interplay of noncovalent interactions (e.g. electrostatic, van der Waals, and hydrophobic forces) during micelle self‐assembly.  相似文献   

8.
A series of C3i‐symmetric bicapped trigonal antiprismatic Cd8 cages [2X@Cd8L6(H2O)6] ? n Y ? solvents (X=Cl?, Y=NO3?, n=2: MOCC‐4 ; X=Br?, Y=NO3?, n=2: MOCC‐5 ; X=NO3?, Y=NO3?, n=2: MOCC‐6 ; X=NO3?, Y=BF4?, n=2: MOCC‐7 ; X=NO3?, Y=ClO4?, n=2: MOCC‐8 ; X=CO32?, n=0: MOCC‐9 ), doubly anion templated by different anions, were solvothermally synthesized by means of a flexible ligand. Interestingly, the CO32? template for MOCC‐9 was generated in situ by two‐step decomposition of DMF solvent. For other MOCCs, spherical or trigonal monovalent anions could also play the role of template in their formation. The template abilities of these anions in the formation of the cages were experimentally studied and are discussed for the first time. Anion exchange of MOCC‐8 was carried out and showed anion‐size selectivity. All of the cage‐like compounds emit strong luminescence at room temperature.  相似文献   

9.
In the salt 1‐methylpiperazine‐1,4‐diium bis(dihydrogen phosphate), C5H13N22+·2H2PO4, (I), and the solvated salt 2‐(pyridin‐2‐yl)pyridinium dihydrogen phosphate–orthophosphoric acid (1/1), C10H9N2+·H2PO4·H3PO4, (II), the formation of O—H...O and N—H...O hydrogen bonds between the dihydrogen phosphate (H2PO4) anions and the cations constructs a three‐ and two‐dimensional anionic–cationic network, respectively. In (I), the self‐assembly of H2PO4 anions forms a two‐dimensional pseudo‐honeycomb‐like supramolecular architecture along the (010) plane. 1‐Methylpiperazine‐1,4‐diium cations are trapped between the (010) anionic layers through three N—H...O hydrogen bonds. In solvated salt (II), the self‐assembly of H2PO4 anions forms a two‐dimensional supramolecular architecture with open channels projecting along the [001] direction. The 2‐(pyridin‐2‐yl)pyridinium cations are trapped between the open channels by N—H...O and C—H...O hydrogen bonds. From a study of previously reported structures, dihydrogen phosphate anions show a supramolecular flexibility depending on the nature of the cations. The dihydrogen phosphate anion may be suitable for the design of the host lattice for host–guest supramolecular systems.  相似文献   

10.
2‐Ureido‐4(1H)‐pyrimidinone‐bridged ferrocene–fullerene assembly I is designed and synthesized for elaborating the photoinduced electron‐transfer processes in self‐complementary quadruply hydrogen‐bonded modules. Unexpectedly, steady‐state and time‐resolved spectroscopy reveal an inefficient electron‐transfer process from the ferrocene to the singlet or triplet excited state of the fullerene, although the electron‐transfer reactions are thermodynamically feasible. Instead, an effective intra‐assembly triplet–triplet energy‐transfer process is found to be operative in assembly I with a rate constant of 9.2×105 s?1 and an efficiency of 73 % in CH2Cl2 at room temperature.  相似文献   

11.
We report the time‐resolved supramolecular assembly of a series of nanoscale polyoxometalate clusters (from the same one‐pot reaction) of the form: [H(10+m)Ag18Cl(Te3W38O134)2]n, where n=1 and m=0 for compound 1 (after 4 days), n=2 and m=3 for compound 2 (after 10 days), and n=∞ and m=5 for compound 3 (after 14 days). The reaction is based upon the self‐organization of two {Te3W38} units around a single chloride template and the formation of a {Ag12} cluster, giving a {Ag12}‐in‐{W76} cluster‐in‐cluster in compound 1 , which further aggregates to cluster compounds 2 and 3 by supramolecular Ag‐POM interactions. The proposed mechanism for the formation of the clusters has been studied by ESI‐MS. Further, control experiments demonstrate the crucial role that TeO32?, Cl?, and Ag+ play in the self‐assembly of compounds 1 – 3 .  相似文献   

12.
N‐Alkyl ammonium resorcinarene chlorides are stabilized by an intricate array of intra‐ and intermolecular hydrogen bonds that leads to cavitand‐like structures. Depending on the upper‐rim substituents, self‐inclusion was observed in solution and in the solid state. The self‐inclusion can be disrupted at higher temperatures, whereas in the presence of small guests the self‐included dimers spontaneously reorganize to 1:1 host–guest complexes. These host compounds show an interesting ability to bind a series of N‐alkyl acetamide guests through intermolecular hydrogen bonds involving the carbonyl oxygen (C?O) atoms and the amide (NH) groups of the guests, the chloride anions (Cl?) and ammonium (NH2+) cations of the hosts, and also through CH ??? π interactions between the hosts and guests. The self‐included and host–guest complexes were studied by single‐crystal X‐ray diffraction, NMR titration, and mass spectrometry.  相似文献   

13.
The formation of dianions in helium nanodroplets is reported for the first time. The fullerene cluster dianions (C60)n2? and (C70)n2? were observed by mass spectrometry for n≥5 when helium droplets containing the appropriate fullerene were subjected to electron impact at approximately 22 eV. A new mechanism for dianion formation is described, which involves a two‐electron transfer from the metastable He? ion. As well as the prospect of studying other dianions at low temperature using helium nanodroplets, this work opens up the possibility of a wider investigation of the chemistry of He?, a new electron‐donating reagent.  相似文献   

14.
The formation of reverse‐vesicular structures of the polyoxometalate‐containing hybrid surfactants [nBu4N]3[MnMo6O18{(OCH2)3? CNHCO(CH2)n?2CH3}2] (Mn‐Anderson‐Cn, n=6, 16) in nonpolar medium was achieved by titrating toluene into Mn‐Anderson‐Cn/acetonitrile (MeCN) solution. Stepwise change of the solvent polarity induces self‐association of the hydrophilic Mn‐Anderson cluster on the hybrid amphiphiles. The reverse‐vesicle formation was characterized by laser light scattering and further confirmed by transmission electron microscopy techniques, and the vesicle sizes increase with increasing toluene contents. The assembly process was accelerated at an elevated temperature. The length of the alkyl tails on the hybrid surfactants has a minor effect on the vesicle sizes, because the strong attraction between the polyoxometalate clusters is more dominant in the reverse‐vesicle formation.  相似文献   

15.
The self‐assembly of triazole amphiphiles was examined in solution, the solid state, and in bilayer membranes. Single‐crystal X‐ray diffraction experiments show that stacked protonated triazole quartets (T4) are stabilized by multiple strong interactions with two anions. Hydrogen bonding/ion pairing of the anions are combined with anion–π recognition to produce columnar architectures. In bilayer membranes, low transport activity is observed when the T4 channels are operated as H+/X? translocators, but higher transport activity is observed for X? in the presence of the K+‐carrier valinomycin. These self‐assembled superstructures, presenting intriguing structural behaviors such as directionality, and strong anion encapsulation by hydrogen bonding supported by vicinal anion–π interactions can serve as artificial supramolecular channels for transporting anions across lipid bilayer membranes.  相似文献   

16.
Aurophilic interactions (AuI???AuI) are crucial in directing the supramolecular self‐assembly of many gold(I) compounds; however, this intriguing chemistry has been rarely explored for the self‐assembly of nanoscale building blocks. Herein, we report on studies on aurophilic interactions in the structure‐directed self‐assembly of ultrasmall gold nanoparticles or nanoclusters (NCs, <2 nm) using [Au25(SR)18]? (SR=thiolate ligand) as a model cluster. The self‐assembly of NCs is initiated by surface‐motif reconstruction of [Au25(SR)18]? from short SR‐[AuI‐SR]2 units to long SR‐[AuI‐SR]x (x>2) staples accompanied by structure modification of the intrinsic Au13 kernel. Such motif reconstruction increases the content of AuI species in the protecting shell of Au NCs, providing the structural basis for directed aurophilic interactions, which promote the self‐assembly of Au NCs into well‐defined nanoribbons in solution. More interestingly, the compact structure and effective aurophilic interactions in the nanoribbons significantly enhance the luminescence intensity of Au NCs with an absolute quantum yield of 6.2 % at room temperature.  相似文献   

17.
Well‐defined amphiphilic polymethylene‐b‐poly (acrylicacid) diblock copolymers have been synthesized via a new strategy combining polyhomologation and atom transfer radical polymerization (ATRP). Hydroxyl‐terminated polymethylenes (PM‐OH) with different molecular weights and narrow molecular weight distribution are obtained through the polyhomologation of dimethylsulfoxonium methylides following quantitative oxidation via trimethylamine‐N‐oxide dihydrate. Subsequently, polymethylene‐based macroinitiators (PM‐MIs Mn = 1,300 g mol?1 [Mw/Mn = 1.11] and Mn = 3,300 g mol?1 [Mw/Mn = 1.04]) are synthesized by transformation of terminal hydroxyl group of PM‐OH to α‐haloester in ~100% conversion. ATRPs of tert‐butyl acrylate (t‐BuA) are then carried out using PM‐MIs as initiator to construct PM‐b‐P(t‐BuA) diblock copolymers with controllable molecular weight (Mn = 8,800–15,800 g mol?1 Mw/Mn = 1.04–1.09) and different weight ratio of PM/P(t‐BuA) segment (1:1.7–1:11.2). The amphiphilic PM‐b‐PAA diblock copolymers are finally prepared by hydrolysis of PM‐b‐P(t‐BuA) copolymers and their self‐assembly behavior in water is preliminarily investigated via the determination of critical micelle concentrations, dynamic light scattering, and transmission electron microscope (TEM). © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

18.
N‐Boc/Fmoc/Z‐N′‐formyl‐gem‐diaminoalkyl derivatives, intermediates particularly useful in the synthesis of partially modified retro‐inverso peptides, have been characterized by both positive and negative ion electrospray ionization (ESI) ion‐trap multi‐stage mass spectrometry (MSn). The MS2 collision induced dissociation (CID) spectra of the sodium adduct of the formamides derived from the corresponding N‐Fmoc/Z‐amino acids, dipeptide and tripeptide acids show the [M + Na‐NH2CHO]+ ion, arising from the loss of formamide, as the base peak. Differently, the MS2 CID spectra of [M + Na]+ ion of all the N‐Boc derivatives yield the abundant [M + Na‐C4H8]+ and [M + Na‐Boc + H]+ ions because of the loss of isobutylene and CO2 from the Boc protecting function. Useful information on the type of amino acids and their sequence in the N‐protected dipeptidyl and tripeptidyl‐N′‐formamides is provided by MS2 and subsequent MSn experiments on the respective precursor ions. The negative ion ESI mass spectra of these oligomers show, in addition to [M‐H]?, [M + HCOO]? and [M + Cl]? ions, the presence of in‐source CID fragment ions deriving from the involvement of the N‐protecting group. Furthermore, MSn spectra of [M + Cl]? ion of N‐protected dipeptide and tripeptide derivatives show characteristic fragmentations that are useful for determining the nature of the C‐terminal gem‐diamino residue. The present paper represents an initial attempt to study the ESI‐MS behavior of these important intermediates and lays the groundwork for structural‐based studies on more complex partially modified retro‐inverso peptides. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
Gas‐phase affinity studies based on cations and anions commonly present in ionic liquid structures, give quantitative information about the magnitude of the interactions holding the two species together when ILs are formed. They also provide clues on how these interactions depend on the nature of the cationic and anionic moieties. In the present work, mass spectrometric experiments, performed using electrospray ionization quadrupole ion‐trap and Fourier transform ion cyclotron resonance mass spectrometry, were used to obtain two affinity scales by Cooks’ kinetic method: one scale for the various cations for the bis(trifluoromethylsulfonyl)imide anion, [NTf2]?, and another for the different anions for the 1‐butyl‐3‐methylimidazolium cation, [C4mim]+. The obtained results are compared with previously reported data and discussed in terms of the structural characteristics of the different cationic and anionic species.  相似文献   

20.
Corrosion is a global problem for any metallic structure or material. Herein we show how metals can easily be protected against acid corrosion using hydrophobic polyoxometalate‐based ionic liquids (POM‐ILs). Copper metal disks were coated with room‐temperature POM‐ILs composed of transition‐metal functionalized Keggin anions [SiW11O39TM(H2O)]n? (TM=CuII, FeIII) and quaternary alkylammonium cations (CnH2 n+1)4N+ (n=7–8). The corrosion resistance against acetic acid vapors and simulated “acid rain” was significantly improved compared with commercial ionic liquids or solid polyoxometalate coatings. Mechanical damage to the POM‐IL coating is self‐repaired in less than one minute with full retention of the acid protection properties. The coating can easily be removed and recovered by rinsing with organic solvents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号