首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An asymptotic solution is obtained for stress and pore pressure fields near the tip of a crack steadily propagating in an elastic–plastic fluid-saturated porous material displaying linear isotropic hardening. Quasi-static crack growth is considered under plane strain and Mode I loading conditions. In particular, the effective stress is assumed to obey the Drucker–Prager yield condition with associative or non-associative flow-rule and linear isotropic hardening is adopted. Both permeable and impermeable crack faces are considered. As for the problem of crack propagation in poroelastic media, the behavior is asymptotically drained at the crack-tip. Plastic dilatancy is observed to have a strong effect on the distribution and intensity of pore water pressure and to increase its flux towards the crack-tip.  相似文献   

2.
Stresses are determined for a finite cylindrical crack that is propagating with a constant velocity in a nonhomogeneous cylindrical elastic layer, sandwiched between an infinite elastic medium and a circular elastic cylinder made from another material. The Galilean transformation is employed to express the wave equations in terms of coordinates that are attached to the moving crack. An internal gas pressure is then applied to the crack surfaces. The solution is derived by dividing the nonhomogeneous interfacial layer into several homogeneous cylindrical layers with different material properties. The boundary conditions are reduced to two pairs of dual integral equations. These equations are solved by expanding the differences in the crack surface displacements into a series of functions that are equal to zero outside the crack. The Schmidt method is then used to solve for the unknown coefficients in the series. Numerical calculations for the stress intensity factors were performed for speeds and composite material combinations.  相似文献   

3.
An elastic constitutive model is proposed to describe the mechanical property of bio-materials that possesses strain limits. Analytical solution for the Mode I crack tip behavior is obtained. The tensile strain limit can be reached by approaching the crack tip in any direction while the compression strain limit can only be reached in two sectors of the crack tip domain.  相似文献   

4.
A traction-displacement relationship that may be embedded into a cohesive zone model for microscale problems of intergranular fracture is extracted from atomistic molecular-dynamics (MD) simulations. An MD model for crack propagation under steady-state conditions is developed to analyze intergranular fracture along a flat Σ99 [1 1 0] symmetric tilt grain boundary in aluminum. Under hydrostatic tensile load, the simulation reveals asymmetric crack propagation in the two opposite directions along the grain boundary. In one direction, the crack propagates in a brittle manner by cleavage with very little or no dislocation emission, and in the other direction, the propagation is ductile through the mechanism of deformation twinning. This behavior is consistent with the Rice criterion for cleavage vs. dislocation blunting transition at the crack tip. The preference for twinning to dislocation slip is in agreement with the predictions of the Tadmor and Hai criterion. A comparison with finite element calculations shows that while the stress field around the brittle crack tip follows the expected elastic solution for the given boundary conditions of the model, the stress field around the twinning crack tip has a strong plastic contribution. Through the definition of a Cohesive-Zone-Volume-Element—an atomistic analog to a continuum cohesive zone model element—the results from the MD simulation are recast to obtain an average continuum traction-displacement relationship to represent cohesive zone interaction along a characteristic length of the grain boundary interface for the cases of ductile and brittle decohesion.  相似文献   

5.
The mechanical behavior of three types of laminated strips is investigated. They are made of three layers filled with homogeneous, isotropic and elastic materials; the upper and lower layer are called adherents, the middle layer is called adhesive. The first model studies a strip consisting of three layers made of materials with similar stiffness; the second one concerns with a strip in which the adhesive is soft; in particular, we suppose that the elastic stiffness of the middle layer is two orders of magnitude smaller than that of the upper and lower layers; the third case is a strip in which the core is thinner and stiffer than the two adherents: the elastic modula of the adherents are one order of magnitude bigger that those of the adhesive. After identifying a parameter of smallness ε (which measures the thickness and the stiffness of each layer), the limit of the solution when ε tends to zero has been considered. Afterwards, it has been shown that each solution of the simplified models verifies the so-called limit problems, written using a “weak” and a “strong” formulation. The existence and uniqueness of the solutions of each limit problem have been established. The strong convergence of the exact solutions towards the solution of the limit problem of the first model has been established, too.  相似文献   

6.
The simple asymptotic problem of an impermeable crack in an electrostrictive ceramic under electric loading is analyzed. Closed form solutions of elastic fields are obtained by using the complex function theory. It is found that the KI-dominant region is very small compared to the electric saturation zone. A fracture parameter for an electrostrictive material subjected to electric loading is discussed. In order to investigate the influence of the transverse electric displacement on fracture behavior under the small-scale conditions, we also consider the modified boundary layer problem of a crack in an electrostrictive material. Analytic solutions of electric displacement fields for the asymptotic problem are obtained based on the nonlinear dielectric theory from a modified boundary layer analysis. The shape of the electric displacement saturation zone is shown to depend on the transverse electric displacement. Stress intensity factors induced by the electrostrictive strains are evaluated using the nonlinear solution of the electric displacements. It is found that the transverse electric displacement affects strongly the variation of the mode mixity.  相似文献   

7.
This is part II of the work concerned with finding the stress intensity factors for a circular crack in a solid with piezoelectric behavior. The method of solution involves reducing the problem to a system of hypersingular integral equations by application of the unit concentrated displacement discontinuity and the unit concentrated electric potential discontinuity derived in part I [1]. The near crack border elastic displacement, electric potential, stress and electric displacement are obtained. Stress and electric displacement intensity factors can be expressed in terms of the displacement and the potential discontinuity on the crack surface. Analogy is established between the boundary integral equations for arbitrary shaped cracks in a piezoelectric and elastic medium such that once the stress intensity factors in the piezoelectric medium can be determined directly from that of the elastic medium. Results for the penny-shaped crack are obtained as an example.  相似文献   

8.
使用子域边界元法对受移动接触弹性体作用下的二维闭合裂纹问题进行了数值计算。由于两弹性体的接触界面和裂纹表面的接触范围的大小和接触状态事先是未知的 ,对此 ,在两个接触表面同时采用迭代的方法进行了求解。在裂纹的每个裂尖上都采用了四分之一的奇异单元以保证裂尖位移场和应力场奇异性的满足。用我们编制的二维裂纹问题程序对一些中心裂纹问题进行了计算 ,计算结果与经典断裂力学的理论值比较吻合。在无摩擦的条件下 ,对一些具有不同角度且受移动接触弹性体作用下的闭合裂纹问题进行了数值计算 ,得到了一些耦合作用下的应力强度因子的计算结果  相似文献   

9.
In this paper, a finite crack with constant length (Yoffe type crack) propagating in a functionally graded coating with spatially varying elastic properties bonded to a homogeneous substrate of finite thickness under anti-plane loading was studied. A multi-layered model is employed to model arbitrary variations of material properties based on two linearly-distributed material compliance parameters. The mixed boundary problem is reduced to a system of singular integral equations that are solved numerically. Some numerical examples are given to demonstrate the accuracy, efficiency and versatility of the model. The numerical results show that the graded parameters, the thicknesses of the interfacial layer and the two homogeneous layers, the crack size and speed have significant effects on the dynamic fracture behavior.  相似文献   

10.
Summary Dynamic stresses around three coplanar cracks in an infinite elastic medium are determined in the paper. Two of the cracks are equal, rectangular and symmetrically situated on either side of the centrally located rectangular crack. Time-harmonic normal traction acts on each surface of the three cracks. To solve the problem, two kind of solutions are superposed: one is a solution for a rectangular crack in an infinite elastic medium, and the other one is that for two rectangular cracks in an infinite elastic medium. The unknown coefficients in the combined solution are determined by applying the boundary conditions at the surfaces of the cracks. Finally, stress intensity factors are calculated numerically for several crack configurations. Received 14 July 1998; accepted for publication 2 December 1998  相似文献   

11.
饱和土中球空腔的瞬态动力响应   总被引:3,自引:2,他引:1  
采用工程上通用的饱和土力学模型,考虑流体与固全之间的耦合作用,利用Laplace变换求解了饱和土中球空腔的瞬态动力响应问题,得到了变换域内的解析解,借助数值Laplace换求解了饱和土中球空腔瞬态动力响应的位移、应力及孔压的变化规律,为分析地下结构瞬态动力响应提供了一种有效的方法,模型符合工程实际,有一定的工程应用价值。  相似文献   

12.
The problem of equilibrium of a thin elastic plate containing a rigid inclusion is considered. On part of the interface between the elastic plate and the rigid inclusion, there is a vertical crack. It is assumed that, on both crack edges, the boundary conditions are given as inequalities describing the mutual impenetrability of the edges. The solvability of the problem is proven and the character of satisfaction of the boundary conditions is described. It is also shown that the problem is the limit problem for a family of other problems posed for a wider region and describing equilibrium of elastic plates with a vertical crack as the rigidity parameter tends to infinity.  相似文献   

13.
Wang  Yuping  Ballarini  Roberto 《Meccanica》2003,38(5):579-593
This paper presents the effects of elastic mismatch and crack-tip position on the stress intensity factors of a long crack penetrating a circular inhomogeneity. The analysis relies on closed-form solutions, derived using complex variable techniques, for the stresses and displacements produced by dislocations positioned inside and outside the inhomogeneity. Dislocation distributions are introduced to express the traction boundary condition along the crack surfaces as a system of singular integral equations, whose solution is obtained through a numerical procedure. It is shown that if the elastic mismatch is interpreted correctly, then the stress intensity factors of this micromechanical model are very good approximations to those computed using a Monte Carlo finite element model of a long crack in a polycrystalline plate with compliant grain boundaries.  相似文献   

14.
A special crack tip displacement discontinuity element   总被引:3,自引:0,他引:3  
Based on the analytical solution to the problem of a constant discontinuity in displacement over a finite line segment in the x, y plane of an infinite elastic solid and the note of the crack tip element by Crouch, in the present paper, the special crack tip displacement discontinuity element is developed. Further the analytical formulas for the stress intensity factors of crack problems in general plane elasticity are given. In the boundary element implementation the special crack tip displacement discontinuity element is placed locally at each crack tip on top of the non-singular constant displacement discontinuity elements that cover the entire crack surface. Numerical results show that the displacement discontinuity modeling technique of a crack presented in this paper is very effective.  相似文献   

15.
In this paper, the Green's function technique is used to develop a solution of an infinite, piezoelectric medium containing either an ellipsoidal cavity or a flat elliptical crack. The coupled elastic and electric fields both inside the cavity and on the boundary of the cavity are obtained, and the stress intensity factor and the electric field intensity factor are also obtained for an elliptical crack. It is found that; (1) the coupled elastic and electric fields inside the cavity keep uniform when the external elastic field and electric field are constant; (2) the behavior of the stress and electric field components in the neighborhood of the crack tip shows the classical type of singularity. The project supported by National Natural Science Foundation of China  相似文献   

16.
In this paper, the behavior of an interface crack for a functionally graded strip sandwiched between two homogeneous layers of finite thickness subjected to an uniform tension is resolved using a somewhat different approach, named the Schmidt method. The Fourier transform technique is applied and a mixed boundary value problem is reduced to two pairs of dual integral equations in which the unknown variables are the jumps of the displacements across the crack surface. To solve the dual integral equations, the jumps of the displacements across the crack surfaces are expanded in a series of Jacobi polynomials. This process is quite different from those adopted in previous works. Numerical examples are provided to show the effects of the crack length, the thickness of the material layer and the materials constants upon the stress intensity factor of the cracks. It can be obtained that the results of the present paper are the same as ones of the same problem that was solved by the singular integral equation method. As a special case, when the material properties are not continuous through the crack line, an approximate solution of the interface crack problem is also given under the assumption that the effect of the crack surface interference very near the crack tips is negligible. Contrary to the previous solution of the interface crack, it is found that the stress singularities of the present interface crack solution are the same as ones of the ordinary crack in homogenous materials.  相似文献   

17.
Mode-I crack growth under conditions of generalized plane stress has been investigated. It has been assumed that near the plane of the crack in the loading zone, the simple stress components corresponding to a central fan field maintain validity up to the elastic-plastic boundary. By the use of expansions of the particle velocities in the coordinate y, and by matching of the relevant stress components and particle velocities to the dominant terms of appropriate elastic fields at the elastic-plastic boundary, a complete solution has been obtained for εy in the plane of the crack. The solution applies from the propagating crack tip up to the moving elastic-plastic boundary. The strain fields for a self-similar crack nucleating at a point and for steady-state propagation of a crack have been considered as special cases.  相似文献   

18.
We Consider fibre-reinforced elastic plates with the reinforcement continuously distributed in concentric circles ; such a material is locally transversely isotropic, with the circumferential direction as the preferred direction. For an annulus bounded by concentric circles, the exact solution of the traction boundary value problem is obtained. When the extension modulus in the fibre direction is large compared to other extension and shear moduli, the material is strongly anisotropic. For this case a simpler approximate solution is obtained by treating the material as inextensible in the fibre direction. It is shown that the exact solution reduces to the inextensible solution in the appropriate limit. The inextensible theory predicts the occurrence of stress concentration layers in which the direct stress is infinite ; for materials with small but finite extensibility these layers correspond to thin regions of high stress and high stress gradient. A boundary layer theory is developed for these regions. For a typical carbon fibre-resin composite, the combined boundary layer and inextensible solutions give an excellent approximation to the exact solution. The theory is applied to the problem of an isotropic plate, under uniform stress at infinity, containing a circular hole which is strengthened by the addition of an annulus of fibre-reinforced material.  相似文献   

19.
Making use of the Somigliana identity, the boundary integral equations are obtained for a planar crack of arbitrary shape in an elastic half space. The material is piezoelectric with transversal isotropy. The solution is given for a penny-shaped crack parallel to the free boundary while the loading is axially symmetric.  相似文献   

20.
The assumptions of impermeable and permeable cracks give rise to significant errors in determining electro-elastic behavior of a cracked piezoelectric material. The former simply imposes that the permittivity or electric displacement of the crack interior vanishes, and the latter neglects also the effects of the dielectric of an opening crack interior. Considering the presence of the dielectric of an opening crack interior and the permeability of the crack surfaces for electric field, this paper analyzes electro-elastic behavior induced by a penny-shaped dielectric crack in a piezoelectric ceramic layer. In the cases of prescribed displacement or prescribed stress at the layer surfaces, the Hankel transform technique is employed to reduce the problem to Fredholm integral equations with a parameter dependent nonlinearly on the unknown functions. For an infinite piezoelectric space, a closed-form solution can be derived explicitly, while for a piezoelectric layer, an iterative technique is suggested to solve the resulting nonlinear equations. Field intensity factors are obtained in terms of the solution of the equations. Numerical results of the crack opening displacement intensity factors are presented for a cracked PZT-5H layer and the effect of applied electric field on crack growth are examined for both cases. The results indicate that the fracture toughness of a piezoelectric ceramic is affected by the direction of applied electric fields, dependent on the elastic boundary conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号