首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Large scale Monte Carlo investigations of the interface between A-rich and B-rich phases of symmetric binary (AB) polymer mixtures are presented, using the bond fluctuation model of flexible chains with NA=NB=N=32 effective monomers. The temperature range studied, 0.144<T/Tc0.759, includes both the strong and the weak segregation limit. Interfacial free energy and interfacial structure are studied, and compared to predictions based on the selfconsistent field theory. Also the broadening of the interfacial width due to capillary waves is considered, and finite size effects due to the confinement of interfaces in thin films of polymer blends are discussed.  相似文献   

2.
Computer simulation studies on the miscibility behavior and single chain properties in binary polymer blends are reviewed. We consider blends of various architectures in order to identify important architectural parameters on a coarse grained level and study their qualitative consequences for the miscibility behavior. The phase diagram, the relation between the exchange chemical potential and the composition, and the intermolecular pair correlation functions for symmetric blends of linear chains, blends of cyclic polymers, blends with an asymmetry in cohesive energies, blends with different chain lengths, blends with distinct monomer shapes, and blends with a stiffness disparity between the components are discussed. For strictly symmetric blends the Flory‐Huggins theory becomes quantitatively correct in the long chain length limit, when the χ parameter is identified via the intermolecular pair correlation function. For small chain lengths composition fluctuations are important. They manifest themselves in 3D Ising behavior at the critical point and an upward parabolic curvature of the χ parameter from small‐angle neutron scattering close to the critical point. The ratio between the mean field estimate and the true critical temperature decreases like √χ/(ρb3) for long chain lengths. The chain conformations in the minority phase of a symmetric blend shrink as to reduce the number of energeticaly unfavorable interactions. Scaling arguments, detailed self‐consistent field calculations and Monte Carlo simulations of chains with up to 512 effective segments agree that the conformational changes decrease around the critical point like 1/√N. Other mechanisms for a composition dependence of the single chain conformations in asymmetric blends are discussed. If the constituents of the blends have non‐additive monomer shapes, one has a large positive chain‐length‐independent entropic contribution to the χ parameter. In this case the blend phase separates upon heating at a lower critical solution temperature. Upon increasing the chain length the critical temperature approaches a finite value from above. For blends with a stiffness disparity an entropic contribution of the χ parameter of the order 10–3 is measured with high accuracy. Also the enthalpic contribution increases, because a back folding of the stiffer component is suppressed and the stiffer chains possess more intermolecular contacts. Two aspects of the single chain dynamics in blends are discussed: (a) The dynamics of short non‐entangled chains in a binary blend are studied via dynamic Monte Carlo simulations. There is hardly any coupling between the chain dynamics and the thermodynamic state of the mixture. Above the critical temperatures both the translational diffusion and the relaxation of the chain conformations are independent of the temperature. (b) Irreversible reactions of a small fraction of reactive polymers at a strongly segregated interface in a symmetric binary polymer blend are investigated. End‐functionalized homopolymers of different species react at the interface instantaneously and irreversibly to form diblock copolymers. The initial reaction rate for small reactant concentrations is time dependent and larger than expected from theory. At later times there is a depletion of the reactive chains at the interface and the reaction is determined by the flux of the chains to the interface. Pertinent off‐lattice simulations and analytical theories are briefly discussed.  相似文献   

3.
Using a Monte‐Carlo simulation of a continuous space Rod Bead Model the interface properties of systems of flexible polymer chains with different sizes of monomers are investigated. An immiscible polymer blend in the strong segregation state is modeled by a double sandwich system of chains differing by an factor of two in the size of the beads and the interfacial tension is calculated by a virial theorem method. The simulation data are compared to self‐consistent mean field and experimental data. The results show that the simulation data agree very satisfactory with mean‐field results. The interfacial tension decreases for asymmetric systems in comparison to symmetric systems with comparable volume contents of monomers and interaction strengths due to a decrease of the effective interaction. The parameters of the investigated systems are close to the properties of PS, PMMA and PI melts. A comparison with experimental results yields a very good agreement with data for PS/PMMA and less satisfactory for PS/PI. Additionally to the interfacial tension we have studied the interfacial width, the deformation of polymer chains near the interface, distributions of chain ends, monomer densities and distributions of centers of mass of chains.

Snapshot of a typical configuration for chains with different monomer sizes and equal number of monomers per chain.  相似文献   


4.
A new Helmholtz energy model of mixing for random copolymer solutions based on a close-packed lattice has been developed. The model contains three terms: the contribution of the athermal mixing of polymer chain and solvent, the Helmoltz energy of mixing in a multi-component Ising lattice where the interactions between segments is accounted for, and the contribution of the dissociation of the polymer and the association of monomers. The Guggenheim model, Yang et al.'s model and the sticky-point model of Cummings, Zhou and Stell are used respectively, for the above three contributions. Comparisons between Monte Carlo simulated coexistence curves with those predicted by various theories for random copolymer solutions with various chain lengths, chain compositions and inter-segment interaction parameters show that the agreement between simulations and the predictions of this work is nearly perfect. The model can be used satisfactorily to correlate the liquid–liquid equilibria of practical random copolymer solutions.  相似文献   

5.
Monte Carlo simulations were performed on semiflexible polymer chains with the goal of delineating their isotropic-nematic (IN) and gas-liquid coexistence envelopes. The chain monomers are spherical beads that interact via a square-well potential with all other beads. Bonded beads are connected by strings chosen so that bond length varies between 1.01sigma and 1.05sigma (where sigma is the hard sphere diameter). The stiffness of the molecules is controlled via a potential between beads separated by two bonds; this potential restricts the distance between these beads to be between 2.02sigma and 2.1sigma. The vapor-liquid coexistence and IN coexistence curves are obtained using computer simulations. An IN transition is found for 10相似文献   

6.
Grand canonical Monte Carlo simulations of a simple model semiflexible equilibrium polymer system, consisting of hard sphere monomers reversibly self-assembling into chains of arbitrary length, have been performed using a novel sampling method to add or remove multiple monomers during a single MC move. Systems with two different persistence lengths and a range of bond association constants have been studied. We find first-order lyotropic phase transitions between isotropic and nematic phases near the concentrations predicted by a statistical thermodynamic theory, but with significantly narrower coexistence regions. A possible contribution to the discrepancy between theory and simulation is that the length distribution of chains in the nematic phase is bi-exponential, differing from the simple exponential distribution found in the isotropic phase and predicted from a mean-field treatment of the nematic. The additional short length-scale characterizing the distribution appears to arise from the lower orientational order of short chains. The dependence of this length-scale on chemical potential, bond association constant, and total monomer concentration has been examined.  相似文献   

7.
The authors present a detailed study of the microscopic parameters, which control the miscibility in binary linear/star polymer blends. The effective interactions of linear/star polymer blends are studied by means of Monte Carlo simulations and comparison is made with linear/linear and star/star blends, which they also determined. Using the bond fluctuation model on a simple cubic lattice, the authors are able to simulate symmetric linear/linear, star/star, and, for the first time, linear/star blends with a moderate number of arms. The simulations were performed at a volume fraction of occupied lattice sites phi=0.5, which corresponds to dense polymer mixtures for this algorithm. In particular, we study star/star blends with 4, 8, and 12 arms and the respective linear/linear blends as well as linear/star blends, all having the same total number of units equal to 73 and 121. The authors find that linear/star blends are more miscible than the corresponding linear/linear blends, which is in agreement with recent experimental and theoretical results. They find that linear/star mixtures are less miscible than star/star blends, a result which is also verified by theoretical findings.  相似文献   

8.
A simple cubic lattice model of the melt of 3-arm star-branched polymers of various length dissolved in a matrix of long linear chains (n1 = 800 beads) is studied using a dynamic Monte Carlo method. The total polymer volume fraction is equal to 0,5, while the volume fraction of the star polymers is about ten times smaller. The static and dynamic properties of these systems are compared with the corresponding model systems of isolated star-branched polymers and with the melt of linear chains. It has been found that the number of dynamic entanglements for the star polymers with arm length up to 400 segments is too small for the onset of the arm retraction mechanism of polymer relaxation. In this regime dynamics of star-branched polymers is close to the dynamics of linear polymers at corresponding concentration and with equivalent chain length. The entanglement length for star polymers appears to be somewhat larger compared with linear chains.  相似文献   

9.
We investigate the structure and thermodynamics of interfaces in dense polymer blends using Monte Carlo (MC) simulations and self‐consistent field (SCF) calculations. For structurally symmetric blends we find quantitative agreement between the MC simulations and the SCF calculations for excess quantities of the interface (e.g., interfacial tension or enrichment of copolymers at the interface). However, a quantitative comparison between profiles across the interface in the MC simulations and the SCF calculations has to take due account of capillary waves. While the profiles in the SCF calculations correspond to intrinsic profiles of a perfectly flat interface the local interfacial position fluctuates in the MC simulations. We test this concept by extensive Monte Carlo simulations and study the cross‐over between “intrinsic” fluctuations which build up the local profile and capillary waves on long (lateral) length scales. Properties of structurally asymmetric blends are exemplified by investigating polymers of different stiffness. At high incompatibilities the interfacial width is not much larger than the persistence length of the stiffer component. In this limit we find deviations from the predictions of the Gaussian chain model: while the Gaussian chain model yields an increase of the interfacial width upon increasing the persistence length, no such increase is found in the MC simulations. Using a partial enumeration technique, however, we can account for the details of the chain architecture on all length scales in the SCF calculations and achieve good agreement with the MC simulations. In blends containing diblock copolymers we investigate the enrichment of copolymers at the interface and the concomitant reduction of the interfacial tension. At weak segregation the addition of copolymers leads to compatibilization. At high incompatibilities, the homopolymer‐rich phase can accommodate only a small fraction of copolymer before the copolymer forms a lamellar phase. The analysis of interfacial fluctuations yields an estimate for the bending rigidity of the interface. The latter quantity is important for the formation of a polymeric microemulsion at intermediate segregation and the consequences for the phase diagram are discussed.  相似文献   

10.
Grand canonical Monte Carlo simulation and simple statistical thermodynamic theory are used to model the aggregation and phase separation of systems of reversibly polymerizing monomers, capable of forming chains with or without the ability to cyclize into rings, with isotropic square-well attractions between nonbonded pairs of monomers. The general trend observed in simulation of chain-only systems, as predicted in a number of published theoretical works, is that the critical temperature for phase separation increases and the critical monomer density decreases with rising polymer bond strength. Introduction of the equilibrium between chains and rings into the theory lowers the predicted critical temperature and increases the predicted critical density. While the chain-only theories predict a vanishing critical density in the limit of complete polymerization, when ring formation is taken into account the predicted critical density in the same limit approaches the density of the onset of the ring-chain transition. The theoretically predicted effect of cyclization on chemical potential is in good qualitative agreement with a subset of simulation results in which chain-only systems were compared with equilibrium mixtures of rings and chains. The influence of attractions on the aggregation number and radius of gyration of chains and rings observed in simulations is also discussed.  相似文献   

11.
The importance of including specific monomer structures, local correlations, and “equation of state effects” into the statistical thermodynamics of polymer blends is accomplished by developing and applying the lattice cluster theory. This new theory provides systematic corrections to Flory-Huggins theory from local correlations and describes polymers as containing structured monomers that extend over several lattice sites.  相似文献   

12.
We develop an analytic theory to estimate the glass transition temperature T(g) of polymer melts as a function of the relative rigidities of the chain backbone and side groups, the monomer structure, pressure, and polymer mass. Our computations are based on an extension of the semiempirical Lindemann criterion of melting to locate T(g) and on the use of the advanced mean field lattice cluster theory (LCT) for treating the thermodynamics of systems containing structured monomer, semiflexible polymer chains. The Lindemann criterion is translated into a condition for T(g) by expressing this relation in terms of the specific volume, and this free volume condition is used to calculate T(g) from our thermodynamic theory. The mass dependence of T(g) is compared to that of other characteristic temperatures of glass-formation. These additional characteristic temperatures are determined from the temperature variation of the LCT configurational entropy, in conjunction with the Adam-Gibbs model for long wavelength structural relaxation. Our theory explains generally observed trends in the variation of T(g) with polymer microstructure, and we find that T(g) can be tuned either upward or downward by increasing the length of the side chains, depending on the relative rigidities of the side groups and the chain backbone. The elucidation of the molecular origins of T(g) in polymer liquids should be useful in designing and processing new synthetic materials and for understanding the dynamics and controlling the preservation of biological substances.  相似文献   

13.
A coarse-grained model of star-branched polymer chains confined in a slit was studied. The slit was formed by two parallel impenetrable surfaces, which were attractive for polymer beads. The polymer chains were flexible homopolymers built of identical united atoms whose positions in space were restricted to the vertices of a simple cubic lattice. The chains were regular star polymers consisted of f = 3 branches of equal length. The chains were modeled in good solvent conditions and, thus, there were no long-range specific interactions between the polymer beads-only the excluded volume was present. Monte Carlo simulations were carried out using the algorithm based on a chain's local changes of conformation. The influence of the chain length, the distances between the confining surfaces, and the strength of the adsorption on the properties of the star-branched polymers was studied. It was shown that the universal behavior found previously for the dimension of chains was not valid for some dynamic properties. The strongly adsorbed chains can change their position so that they swap between both surfaces with frequency depending on the size of the slit and on the temperature only.  相似文献   

14.
We study the structure of an infiltrating hard spherical nanoparticle into a polymer brush using extensive off‐lattice Monte Carlo simulations of a basic theoretical model. We show that as long as the spherical particle is coated with a surface layer that interacts attractively with brush monomers, it can penetrate deeply into a dense polymer brush near the grafting surface. The infiltration process contains two stages: diffusing nanoparticle absorbing onto the surface of the polymer brush and engulfing of the nanoparticle by polymer chains. After the nanoparticle fully immerses in the dense polymer brush region, the buoyant forces levels off because of symmetric repulsions that endows increasing nanoparticle mobility and encourages the second transition. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011  相似文献   

15.
Monte Carlo simulations are presented, dealing with phase diagrams of block copolymer melts and polymer blends, including the unmixing kinetics of the latter systems. The theoretical background is briefly reviewed: Ginzburg-type criteria reveal that in mixtures of long flexible polymers a “crossover” occurs from mean-field behavior (as described by Flory-Huggins theory) to nonclassical Ising-type behavior, and spinodal curves can be unusually sharp. This crossover is demonstrated by large scale simulations of the bond fluctuation model, and it is also shown that for symmetric mixtures the critical temperature scales with chain length as Tc α N. The prefactor in this relation is distinctly smaller than predicted by Flory-Huggins, but the Curro-Schweizer integral equation theory prediction Tc α √N is clearly ruled out. Tests of the Cahn theory on the initial stages of spinodal decomposition of polymer blends will also be reported. To conclude, the mesophase formation in block copolymers is discussed, and it is shown that the simulations agree very well with experiment. The pronounced chain stretching that already occurs in the disordered phase is compelling evidence against the validity of simple random phase approximation concepts for these systems. This shows how Monte Carlo simulations can assist in better understanding large classes of polymeric materials.  相似文献   

16.
The effects of blend composition on morphology, order-disorder transition (ODT), and chain conformation of symmetric ABA/AB copolymer blends confined between two neutral hard walls have been investigated by lattice Monte Carlo simulation. Only lamellar structure is observed in all the simulation morphologies under thermodynamic equilibrium state, which is supported by theoretical prediction. When the composition of AB diblock copolymer (phi) increases, both lamellar spacing and the corresponding ODT temperature increase, which can be attributed to the variation of conformation distribution of the diblock and the triblock copolymer chains. In addition, both diblock and triblock copolymer, chains with bridge conformation extend dramatically in the direction parallel to the surface when the system is in ordered state. Finally, the copolymer chain conformation depends strongly on both the blend composition and the incompatibility parameter chiN.  相似文献   

17.
By employing dynamic Monte Carlo simulations, we investigate a coil-to-toroid transition of self-attractive semiflexible polymers and the spatial distributions of nanoparticles in selfattractive semiflexible polymer/nanoparticle composites. The conformation of self-attractive semiflexible polymers depends on bending energy and self-attractive interactions between monomers in polymer chains. A three-stage process of toroid formation for self-attractive semiflexible chains is shown: several isolated toroids, a loose toroid structure, and a compact toroid structure. Utilizing the compact toroid conformations of self-attractive semiflexible chains, we can control effectively the spatial distributions of nanoparticles in self-attractive semiflexible polymer nanocomposites, and an unconventional toroid structure of nanoparticles is observed.  相似文献   

18.
Off‐lattice Monte Carlo simulations employing the pivot algorithm are used to generate ideal and excluded volume linear polymers in three dimensions. The structure function at large wavevectors is calculated from the resulting configurations. This is compared to the exact equation for ideal chains and to experimental data and both scaling and renormalization group predictions for excluded volume chains. It is found that using the des Cloizeaux form for the distance distribution function in an analytic calculation of the structure function leads to close agreement with the experimental and Monte Carlo data.  相似文献   

19.
柔性高分子/小分子液晶混合物的自洽场理论   总被引:5,自引:1,他引:5  
王家芳  张红东  邱枫  杨玉良 《化学学报》2003,61(8):1180-1185
发展了柔性高分子/小分子液晶混合物连续自洽场理论,将小分子液晶模型化 为取向与位置无关的单体分子,小分子液晶间存在各向异性的Maier-Saupe相互作 用,该理论可还原成高分子和各向同性小分子组成的Flory-Huggins溶液理论和纯 液晶的Maier-Squpe液晶理论,通过数值解自洽场方程组,还将理论用于研究柔性 高分子/小分子液晶混合物相分离开界面性质,得到的结果与用Helfand格子界面理 论和MOnte Carlo模拟的结果一致。  相似文献   

20.
Equilibrium and non-equilibrium molecular dynamics and Monte Carlo simulation techniques were applied to predict various thermodynamic, transport and vapor-liquid equilibrium properties of binary mixtures of ethylene glycol and water (EG-W) based on OPLS-AA and SPC/E force fields. The properties predicted include density, vaporization enthalpy, enthalpy of mixing, heat capacities, diffusion coefficients, shear viscosities, thermal conductivities, vapor-liquid coexistence isotherms and isobaric curves, and saturation vapor pressures. Good agreements with experimental data were obtained for most of these properties. Errors are mostly related to inaccuracy found in predictions of pure fluids; a correction to prediction of pure substance can systematically improve prediction for the mixture. This work suggests that OPLS-AA and SPC/E force fields using the common combining rules are transferable for predicting multiple physical properties of EG-W mixtures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号