首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The influence of charged side chains on the folding-unfolding equilibrium of beta-peptides was investigated by means of molecular dynamics simulations. Four different peptides containing only negatively charged side chains, positively charged side chains, both types of charged side chains (with the ability to form stabilizing salt bridges) or no charged side chains were studied under various conditions (different simulation temperatures, starting structures and solvent environment). The NMR solution structure in methanol of one of the peptides (A) has already been published; the synthesis and NMR analysis of another peptide (B) is described here. The other peptides (C and D) studied herein have hitherto not been synthesized. All four peptides A-D are expected to adopt a left-handed 3(14)-helix in solution as well as in the simulations. The resulting ensembles of structures were analyzed in terms of conformational space sampled by the peptides, folding behavior, structural properties such as hydrogen bonding, side chain-side chain and side chain-backbone interactions and in terms of the level of agreement with the NMR data available for two of the peptides. It was found that the presence of charged side chains significantly slows down the folding process in methanol solution due to the stabilization of intermediate conformers with side chain-backbone interactions. In water, where the solvent competes with the solute-solute polar interactions, the folding process to the 3(14)-helix is faster in the simulations.  相似文献   

2.
Aqueous solution secondary structures of minimalist LK-peptides, with the generic sequence defined as KLL(KLLL)nKLLK, have been analyzed by means of circular dichroism (CD) and Raman scattering techniques. Our discussion in the present paper is mainly focused on four synthetic peptides (from 5 to 19 amino acids), KLLLK, KLLKLLLKLLK, KLLKLLLKLLLKLLK, and KLLKLLLKLLLKLLLKLLK, corresponding to the repeat unit, and to the peptide chains with the values of n = 1-3, respectively. CD and Raman spectra were analyzed in order to study both structural features of the peptide chains and their capability to form aggregates. On the basis of the obtained results it was concluded that the conformational flexibility of the shortest peptides (5-mer and 11-mer) is high enough to adopt random, beta-type, and helical chains in aqueous solution. However, the 11-mer shows a clear tendency to form beta-strands in phosphate buffer. The conformational equilibrium can be completely shifted to beta-type structures upon increasing ionic strength, i.e., in PBS and tris buffers. This equilibrium can also be shifted toward helical chains in the presence of methanol. Finally, the longest peptides (15-mer and 19-mer) are shown to form alpha-helical chains with an amphipathic character in aqueous solution. The possibility of bundle formation between helical chains is discussed over the temperature-dependent H-D exchange on labile hydrogens and particularly by considering the particular behavior of an intense Raman mode at 1127 cm-1 originating from the leucine residue side chain. The conformational dependence of this mode observed upon selective deuteration has never been documented up to now.  相似文献   

3.
Amyloid fibril formation, as observed in Alzheimer's disease and type II diabetes, is currently described by a nucleation-condensation mechanism, but the details of the process preceding the formation of the nucleus are still lacking. In this study, using an activation-relaxation technique coupled to a generic energy model, we explore the aggregation pathways of 12 chains of the hexapeptide NFGAIL. The simulations show, starting from a preformed parallel dimer and ten disordered chains, that the peptides form essentially amorphous oligomers or more rarely ordered beta-sheet structures where the peptides adopt a parallel orientation within the sheets. Comparison between the simulations indicates that a dimer is not a sufficient seed for avoiding amorphous aggregates and that there is a critical threshold in the number of connections between the chains above which exploration of amorphous aggregates is preferred.  相似文献   

4.
The influence of valine side chains on the folding/unfolding equilibrium and, in particular, on the 314‐helical propensity of β3‐peptides were investigated by means of molecular‐dynamics (MD) simulation. To that end, the valine side chains in two different β3‐peptides were substituted by leucine side chains. The resulting four peptides, of which three have never been synthesized, were simulated for 150 to 200 ns at 298 and 340 K, starting from a fully extended conformation. The simulation trajectories obtained were compared with respect to structural preferences and folding behavior. All four peptides showed a similar folding behavior and were found to predominantly adopt 314‐helical conformations, irrespective of the presence of valine side chains. No other well‐defined conformation was observed at significant population in any of the simulations. Our results imply that β3‐peptides show a structural preference for 314‐helices independent of the branching nature of the side chains, in contrast to what has been previously proposed on the basis of circular‐dichroism (CD) measurements.  相似文献   

5.
Collapse to compact states in the gas phase, with smaller collision cross sections than calculated for their native-like structure, has been reported previously for some protein complexes although not rationalized. Here we combine experimental and theoretical studies to investigate the gas-phase structures of four multimeric protein complexes during collisional activation. Importantly, using ion mobility-mass spectrometry (IM-MS), we find that all four macromolecular complexes retain their native-like topologies at low energy. Upon increasing the collision energy, two of the four complexes adopt a more compact state. This collapse was most noticeable for pentameric serum amyloid P (SAP) which contains a large central cavity. The extent of collapse was found to be highly correlated with charge state, with the surprising observation that the lowest charge states were those which experience the greatest degree of compaction. We compared these experimental results with in vacuo molecular dynamics (MD) simulations of SAP, during which the temperature was increased. Simulations showed that low charge states of SAP exhibited compact states, corresponding to collapse of the ring, while intermediate and high charge states unfolded to more extended structures, maintaining their ring-like topology, as observed experimentally. To simulate the collision-induced dissociation (CID) of different charge states of SAP, we used MS to measure the charge state of the ejected monomer and assigned this charge to one subunit, distributing the residual charges evenly among the remaining four subunits. Under these conditions, MD simulations captured the unfolding and ejection of a single subunit for intermediate charge states of SAP. The highest charge states recapitulated the ejection of compact monomers and dimers, which we observed in CID experiments of high charge states of SAP, accessed by supercharging. This strong correlation between theory and experiment has implications for further studies as well as for understanding the process of CID and for applications to gas-phase structural biology more generally.  相似文献   

6.
The self-assembly of model peptides is studied using Brownian dynamics computer simulations. A coarse-grained, bead-spring model is designed to mimic silaffins, small peptides implicated in the biomineralization of certain silica diatom skeletons and observed to promote the formation of amorphous silica nanospheres in vitro. The primary characteristics of the silaffin are a 15 amino acid hydrophilic backbone and two modified lysine residues near the ends of the backbone carrying long polyamine chains. In the simulations, the model peptides self-assemble to form spherical clusters, networks of strands, or bicontinuous structures, depending on the peptide concentration and effective temperature. The results indicate that over a broad range of volume fractions (0.05-25%) the characteristic structural lengthscales fall in the range 12-45 nm. On this basis, we suggest that self-assembled structures act as either nucleation points or scaffolds for the deposition of 10-100 nm silica-peptide building blocks from which diatom skeletons and synthetic nanospheres are constructed.  相似文献   

7.
Fibrillary protein aggregates rich in beta-sheet structure have been implicated in the pathology of several neurodegenerative diseases. In this work, we investigate the formation of fibrils by performing discontinuous molecular dynamics simulations on systems containing 12 to 96 model Ac-KA(14)K-NH(2) peptides using our newly developed off-lattice, implicit-solvent, intermediate-resolution model, PRIME. We find that, at a low concentration, random-coil peptides assemble into alpha-helices at low temperatures. At intermediate concentrations, random-coil peptides assemble into alpha-helices at low temperatures and large beta-sheet structures at high temperatures. At high concentrations, the system forms beta-sheets over a wide range of temperatures. These assemble into fibrils above a critical temperature which decreases with concentration and exceeds the isolated peptide's folding temperature. At very high temperatures and all concentrations, the system is in a random-coil state. All of these results are in good qualitative agreement with those by Blondelle and co-workers on Ac-KA(14)K-NH(2) peptides. The fibrils observed in our simulations mimic the structural characteristics observed in experiments in terms of the number of sheets formed, the values of the intra- and intersheet separations, and the parallel peptide arrangement within each beta-sheet. Finally, we find that when the strength of the hydrophobic interaction between nonpolar side chains is high compared to the strength of hydrogen bonding, amorphous aggregates, rather than fibrillar aggregates, are formed.  相似文献   

8.
We adopt a global optimization method to predict two-dimensional (2D) nanostructures through the particle-swarm optimization (PSO) algorithm. By performing PSO simulations, we predict new stable structures of 2D boron-carbon (B-C) compounds for a wide range of boron concentrations. Our calculations show that: (1) All 2D B-C compounds are metallic except for BC(3) which is a magic case where the isolation of carbon six-membered ring by boron atoms results in a semi-conducting behavior. (2) For C-rich B-C compounds, the most stable 2D structures can be viewed as boron doped graphene structures, where boron atoms typically form 1D zigzag chains except for BC(3) in which boron atoms are uniformly distributed. (3) The most stable 2D structure of BC has alternative carbon and boron ribbons with strong in-between B-C bonds, which possesses a high thermal stability above 2000 K. (4) For B-rich 2D B-C compounds, there is a novel planar-tetracoordinate carbon motif with an approximate C(2)(v) symmetry.  相似文献   

9.
Using the first-principles plane wave pseudopotential method, we have studied the structures and stability of gold and silver alloy monatomic chains. It is found that minimizing system's enthalpy instead of its energy is critical to identify the stability of stretched alloy chains at zero temperature since the string tension can efficiently suppress the self-purification. Our simulations show that all the gold-containing chains do exhibit a local enthalpy minimum, giving a reasonable interpretation for the experimental observations of gold and silver alloy chains with different Ag concentrations [Bettini et al., Nat. Nanotechnol. 1, 182 (2006)]. These alloy chains are stabilized by the combined actions of the gold's relativistic effect and the string tension applied by the tip contacts, having similar geometrical structures to those of the pure gold chains.  相似文献   

10.
The dynamical behavior of model peptides was evaluated with respect to their ability to form internal proton donor-acceptor pairs using molecular dynamics simulations. The proton donor-acceptor pairs are postulated to be prerequisites for peptide bond cleavage resulting in formation of b and y ions during low-energy collision-induced dissociation in tandem mass spectrometry (MS/MS). The simulations for the polyalanine pentamer Ala(5)H(+) were compared with experimental data from energy-resolved surface induced dissociation (SID) studies. The results of the simulation are insightful into the events that likely lead up to the fragmentation of peptides. Nine-mer polyalanine-based model peptides were used to examine the dynamical effect of each of the 20 common amino acids on the probability to form donor-acceptor pairs at labile peptide bonds. A range of probabilities was observed as a function of the substituted amino acid. However, the location of the peptide bond involved in the donor-acceptor pair plays a critical role in the dynamical behavior. This influence of position on the probability of forming a donor-acceptor pair would be hard to predict from statistical analyses on experimental spectra of aggregate, diverse peptides. In addition, the inclusion of basic side chains in the model peptides alters the probability of forming donor-acceptor pairs across the entire backbone. In this case, there are still more ionizing protons than basic residues, but the side chains of the basic amino acids form stable hydrogen bond networks with the peptide carbonyl oxygens and thus act to prevent free access of "mobile protons" to labile peptide bonds. It is clear from the work that the identification of peptides from low-energy CID using automated computational methods should consider the location of the fragmenting bond as well as the amino acid composition.  相似文献   

11.
The implementation of molecular dynamics with the united-residue (UNRES) force field is extended to treat multichain proteins. Constant temperature was maintained in the simulations with Berendsen or Langevin thermostats. The method was tested on three alpha-helical proteins (1G6U and GCN4-p1, each with two chains, and 1C94, with four chains). Simulations were carried out for both the isolated single chains and the multichain complexes. The proteins were folded by starting from the extended conformation with random initial velocities and with the chains parallel to each other. No symmetry constraints or structure information were included for the single chains or the multichain complexes. In the case of single-chain simulations, a high percentage of the trajectories (100% for 1G6U, 90% for GCN4-p1, and 80% for 1C94) converged to nativelike structures (assumed as the experimental structure of a monomer in the multichain complex), showing that, for the proteins studied in this work with the UNRES force field, the interactions between chains are not critical for stabilization of the individual chains. In the case of multichain simulations, the native structures of the 1G6U and GCN4-p1 complexes, but not that of 1C94, are predicted successfully. The association of the subunits does not follow a unique mechanism; the monomers were observed to fold both before and simultaneously with their association.  相似文献   

12.
Cation-pi interactions between amino acid side chains are increasingly being recognized as important structural and functional features of proteins and other biomolecules. Although these interactions have been found in static protein structures, they have not yet been detected in dynamic biomolecular systems. We determined, by (1)H NMR spectroscopic titrations, the energies of cation-pi interactions of the amino acid derivative AcLysOMe (1) with AcPheOEt (2) and with AcTyrOEt (3) in aqueous and three organic solvents. The interaction energy is substantial; it ranges from -2.1 to -3.4 kcal/mol and depends only slightly on the dielectric constant of the solvent. To assess the effects of auxiliary interactions and structural preorganization on formation of cation-pi interactions, we studied these interactions in the association of pentapeptides. Upon binding of the positively-charged peptide AcLysLysLysLysLysNH(2) (5) to the negatively-charged partner AcAspAspXAspAspNH(2) (6), in which X is Leu (6a), Tyr (6b), and Phe (6c), multiple interactions occur. Association of the two pentapeptides is dynamic. Free peptides and their complex are in fast exchange on the NMR time-scale, and 2D (1)H ROESY spectra of the complex of the two pentapeptides do not show intermolecular ROESY peaks. Perturbations of the chemical shifts indicated that the aromatic groups in peptides 6b and 6c were affected by the association with 5. The association constants K(A) for 5 with 6a and with 6b are nearly equal, (4.0 +/- 0.7) x 10(3) and (5.0 +/- 1.0) x 10(3) M(-)(1), respectively, while K(A) for 5 with 6c is larger, (8.3 +/- 1.3) x 10(3) M(-)(1). Molecular-dynamics (MD) simulations of the pentapeptide pairs confirmed that their association is dynamic and showed that cation-pi contacts between the two peptides are stereochemically possible. A transient complex between 5 and 6 with a prominent cation-pi interaction, obtained from MD simulations, was used as a template to design cyclic peptides C(X) featuring persistent cation-pi interactions. The cyclic peptide C(X) had a sequence in which X is Tyr, Phe, and Leu. The first two peptides do, but the third does not, contain the aromatic residue capable of interacting with a cationic Lys residue. This covalent construct offered conformational stability over the noncovalent complexes and allowed thorough studies by 2D NMR spectroscopy. Multiple conformations of the cyclic peptides C(Tyr) and C(Phe) are in slow exchange on the NMR time-scale. In one of these conformations, cation-pi interaction between Lys3 and Tyr9/Phe9 is clearly evident. Multiple NOEs between the side chains of residues 3 and 9 are observed; chemical-shift changes are consistent with the placement of the side chain of Lys3 over the aromatic ring. In contrast, the cyclic peptide C(Leu) showed no evidence for close approach of the side chains of Lys3 and Leu9. The cation-pi interaction persists in both DMSO and aqueous solvents. When the disulfide bond in the cyclic peptide C(Phe) was removed, the cation-pi interaction in the acyclic peptide AC(Phe) remained. To test the reliability of the pK(a) criterion for the existence of cation-pi interactions, we determined residue-specific pK(a) values of all four Lys side chains in all three cyclic peptides C(X). While NOE cross-peaks and perturbations of the chemical shifts clearly show the existence of the cation-pi interaction, pK(a) values of Lys3 in C(Tyr) and in C(Phe) differ only marginally from those values of other lysines in these dynamic peptides. Our experimental results with dynamic peptide systems highlight the role of cation-pi interactions in both intermolecular recognition at the protein-protein interface and intramolecular processes such as protein folding.  相似文献   

13.
Theoretical and experimental mixed approaches are complementary and valuable. Our DFT calculations support the mechanism suggested by Kosower, adding to it a key diaziridine intermediate that determines the relative product distribution of this reaction. Our results are consistent with the formation of the diazoketene intermediate as the rate-limiting step. Based on curve fittings, first or second-order kinetics cannot be ruled out. This may indicate that more than one mechanism is simultaneously at play in this transformation. This unexpected outcome led us to study an alternative cyclopropenone intermediate. Although cyclopropenone is not likely to be formed under thermal conditions, adding it to the reaction mixture results in bimane structures. The most staggering finding from this investigation was the unanticipated generation of the unsymmetrical anti-(Me,Me)(Ph,Ph)bimane. The optimization of this route towards unsymmetrical bimanes will require additional investigation.  相似文献   

14.
Aggregation of polyglutamine peptides with β‐sheet structures is related to some important neurodegenerative diseases such as Huntington's disease. However, it is not clear how polyglutamine peptides form the β‐sheets and aggregate. To understand this problem, we performed all‐atom replica‐exchange molecular dynamics simulations of one and two polyglutamine peptides with 10 glutamine residues in explicit water molecules. Our results show that two polyglutamine peptides mainly formed helix or coil structures when they are separated, as in the system with one‐polyglutamine peptide. As the interpeptide distance decreases, the intrapeptide β‐sheet structure sometimes appear as an intermediate state, and finally the interpeptide β‐sheets are formed. We also find that the polyglutamine dimer tends to form the antiparallel β‐sheet conformations rather than the parallel β‐sheet, which is consistent with previous experiments and a coarse‐grained molecular dynamics simulation. © 2014 Wiley Periodicals, Inc.  相似文献   

15.
Thereza Soares 《Tetrahedron》2004,60(35):7775-7780
β-Polypeptides are known to adopt helical secondary structure in organic solvents, even for rather short chain lengths. It is investigated whether a short α-polypeptide with amino-acid side chains that enable β-peptides to adopt helical structures, can maintain or adopt stable helical structure in methanol or in water. The molecular dynamics simulations do not predict a particular fold, which indicates an essential role for the additional methylene moiety in the backbone of β-peptides regarding helix stability.  相似文献   

16.
We introduce a family of procedures designed to sample side-chain conformational space at particular locations in protein structures. These procedures (CRSP) use intensive cycles of random assignment of side-chain conformations followed by minimization to determine all the conformations that a group of side-chains can adopt simultaneously. First, we consider a procedure evolving in the dihedral space (dCRSP). Our results suggest that it can accurately map low-energy conformations adopted by clusters of side-chains of a protein. dCRSP is relatively insensitive to various important parameters, and it is sufficiently accurate to capture efficiently the constraint induced by the environment on the conformations a particular side-chain can adopt. Our results show that dCRSP, compared with molecular dynamics (MD), can overcome the problem of the limited set of conformations reached in a reasonable amount of simulations. Next, we introduce procedures (vCRSP) in which valence angles are relaxed, and we assess how efficiently they quantify the conformational entropy of side-chains in the protein native state. For simple peptides, entropies obtained with vCRSP are fully compatible with those obtained with a Monte Carlo procedure. For side-chains in a protein environment, however, vCRSP appears of limited use. Finally, we consider a two-step procedure that combines dCRSP and vCRSP. Our tests suggest that it is able to overcome the limitations of vCRSP. We also note that dCRSP provides a reasonable initial approximation. This family of procedures offers promise in quantifying the contribution of conformational entropy to the energetics of protein structures.  相似文献   

17.
Annular structures have been observed experimentally in aggregates of polyglutamine-containing proteins and other proteins associated with diseases of the brain. Here we report the observation of annular structures in molecular-level simulations of large systems of model polyglutamine peptides. A system of 24 polyglutamine chains 16 residues long at a concentration of 5 mM spontaneously formed large beta sheets which curved to form tube-like annular structures that resemble beta barrels. This work was accomplished by extending the PRIME model to polyglutamine. PRIME is an off-lattice, unbiased, intermediate-resolution protein model based on an amino acid representation of between three and seven united atoms depending on the residue being modeled. Our results are interesting not only because of the recent discovery of tubular protofibrils in experiments on aggregation of mutant huntingtin fragments containing expanded polyglutamine tracts but also because Perutz predicted that polyglutamine forms water filled nanotubes.  相似文献   

18.
Differences in solution behavior among four semiconductor-binding peptides   总被引:1,自引:0,他引:1  
Recent experiments have identified peptides that adhere to GaAs and Si surfaces. Here, we use all-atom Monte Carlo simulations with implicit solvent to investigate the behavior in aqueous solution of four such peptides, all with 12 residues. At room temperature, we find that all four peptides are largely unstructured, which is consistent with experimental data. At the same time, we find that one of the peptides is structurally different and more flexible, as compared to the others. This finding points at structural differences as a possible explanation for differences in adhesion properties among these peptides. By also analyzing designed mutants of two of the peptides, an experimental test of this hypothesis is proposed.  相似文献   

19.
The temperature dependence of the (1)H chemical shifts of six designed peptides previously shown to adopt beta-hairpin structures in aqueous solution has been analyzed in terms of two-state (beta-hairpin left arrow over right arrow coil) equilibrium. The stability of the beta-hairpins formed by these peptides, as derived from their T(m) (midpoint transition temperature) values, parallels in general their ability to adopt those structures as deduced from independent NMR parameters: NOEs, Deltadelta(C)(alpha)(H), Deltadelta(C)(alpha), and Deltadelta(C)(beta) values. The observed T(m) values are dependent on the particular position within the beta-hairpin that is probed, indicating that their folding to a beta-hairpin conformation deviates from a "true" two-state transition. To obtain individual T(m) values for each hairpin region in each peptide, a simplified model of a successive uncoupled two-state equilibrium covering the entire process has been applied. The distribution of T(m) values obtained for the different beta-hairpin regions (turn, strands, backbone, side chains) in the six analyzed peptides reveals a similar pattern. A model for beta-hairpin folding is proposed on the basis of this pattern and the reasonable assumption that regions showing higher T(m) values are the last ones to unfold and, presumably, the first to form. With this assumption, the analysis suggests that turn formation is the first event in beta-hairpin folding. This is consistent with previous results on the essential role of the turn sequence in beta-hairpin folding.  相似文献   

20.
It is known that Huntington's disease patients commonly have glutamine (Q) repeat sequences longer than a critical length in the coding area of Huntingtin protein in their genes. As the polyglutamine (polyQ) region becomes longer than the critical length, the disease occurs and Huntingtin protein aggregates, both in vitro and in vivo, as suggested by experimental and clinical data. The determination of polyglutamine structure is thus very important for elucidation of the aggregation and disease mechanisms. Here, we perform molecular dynamics calculations on the stability of the structure based on the β-helix structure suggested by Perutz et al. (2002) [Perutz, M.F., Finch, J.T., Berriman, J., Lesk, A., 2002. Amyloid fibers are water-filled nanotubes. Proc. Natl. Acad. Sci. USA 99, 5591]. We ensure that perfect hydrogen bonds are present between main chains of the β-helix based on the previous studies, and perform simulations of stretches with 20, 25, 30, 37 and 40 glutamine residues (20Q, 25Q, 30Q, 37Q and 40Q) for the Perutz models with 18.5 and 20 residues per turn (one coil). Our results indicate that the structure becomes more stable with the increase of repeated number of Q, and there is a critical Q number of around 30, above which the structure of the Perutz model is kept stable. In contrast to previous studies, we started molecular dynamics simulations from conformations in which the hydrogen bonds are firmly formed between stacked main chains. This has rendered the initial β-helix structures of polyQ much more stable for longer time, as compared to those proposed previously. Model calculations for the initial structures of polyQ dimer and tetramer have also been carried out to study a possible mechanism for aggregation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号