首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The present work is devoted to the numerical simulation of two important phenomena in the field of solid propellant rocket motors: the first is acoustic boundary layers that develop above the burning propellant; the other is a periodic vortex-shedding phenomenon which is the result of a strong coupling between the instability of mean flow shear layers and acoustic motions in the chamber. To predict the acoustic boundary layer, computations were performed for the lower half of a rectangular chamber with bottom-side injection. The outflow pressure is sinusoidally perturbed at a given frequency. For the highest CFL numbers the implicit scheme is not able to compute the unsteadiness in the acoustic boundary layer. With very low CFL numbers or with the explicit scheme the main features of the acoustic field are captured. To simulate the vortex-shedding mechanismin a segmented solid rocket motor, the explicit version is used. This computation shows a mechanism for ‘self-excited’ vortex shedding close to the second axial mode frequency. The use of the flux-splitting technique reduces substantially the amplitude of the oscillations. A few iterations are done with flux splitting, then the computation is performed without this technique. In this case both the frequency and the intensity are well predicted. A geometry more representative of the solid rocket motor is also computed. In this case the vortex-shedding process is more complex and pairing is observed.  相似文献   

2.
This paper describes free acoustic oscillations of gas in a chamber with a jet flowing through its nozzle in the case of nonstationary intensity component of vortex sheet flowing down from the edge of the nozzle. There is established feedback between acoustic oscillations and oscillations induced by a corresponding vortex sheet component. It is shown that, in the presence of given feedback, there could be instability of acoustic oscillations, which would result in acoustic self-oscillations in the chamber. The boundaries of the domain in which instability is formed are determined by developing a mathematical model of stable acoustic oscillations in the chamber with account for the influence of the vortex sheet.  相似文献   

3.
The generation of sound by flow through a closed, cylindrical cavity (expansion chamber) accommodated with a long tailpipe is investigated analytically and numerically. The sound generation is due to self-sustained flow oscillations in the cavity. These oscillations may, in turn, generate standing (resonant) acoustic waves in the tailpipe. The main interest of the paper is in the interaction between these two sound sources. An analytical, approximate solution of the acoustic part of the problem is obtained via the method of matched asymptotic expansions. The sound-generating flow is represented by a discrete vortex method, based on axisymmetric vortex rings. It is demonstrated through numerical examples that inclusion of acoustic feedback from the tailpipe is essential for a good representation of the sound characteristics.  相似文献   

4.
During the commissioning period of a 35 MW turbo-compressor in a natural gas storage station, the vibration level of the compressor rotor increased sharply when the volume flow rate exceeded a critical value. The test results indicated that the acoustic standing waves in the ring chamber formed by the inlet scroll are excited by vortex shedding from struts in a downstream radial flow chamber. To alleviate vortex shedding from the struts, it was decided to mount small airfoils with a thin trailing edge in the wake of the struts. However, due to design constraints, streamwise gaps and transverse offsets between the struts and the airfoils could not be avoided. To investigate the effect of these gaps and offsets on the resonance mechanism, wind tunnel tests of a simple but conservative model were performed. Subsequent implementing of the airfoils into the wakes of the struts suppressed the acoustic resonance mechanism and thereby the rotor vibration at the acoustic resonance frequency was eliminated.  相似文献   

5.
The interaction between disturbances in a compressible boundary layer in the presence of distributed mass transfer (injection or suction) through a permeable porous wall is considered in the linear and nonlinear approximations (weakly nonlinear stability theory). The regimes of moderate and high supersonic velocities (Mach numbers M = 2 and 5.35) are studied. The boundary conditions for the disturbances on a permeable wall are derived with account for the gas compressibility in pores and the presence of a suction chamber. Maximum pore dimensions, at which the surface properties have no effect on the disturbance characteristics, which are stabilized upon suction and destabilized upon injection, are determined. When the surface properties are taken into account, intense growth of the first-mode vortex disturbances occurs, which can completely undo the stabilizing effect of the suction. Injection leads to the vortex and acoustic mode destabilization on the linear range and the enhancement of the nonlinear processes on the transitional range.  相似文献   

6.
A numerical study on the flow past a square cylinder placed parallel to a wall, which is moving at the speed of the far field has been made. Flow has been investigated in the laminar Reynolds number (based on the cylinder length) range. We have studied the flow field for different values of the cylinder to wall separation length. The governing unsteady Navier–Stokes equations are discretized through the finite volume method on a staggered grid system. A SIMPLE type of algorithm has been used to compute the discretized equations iteratively. A shear layer of negative vortex generates along the surface of the wall, which influences the vortex shedding behind the cylinder. The flow‐field is distinct from the flow in presence of a stationary wall. An alternate vortex shedding occurs for all values of gap height in the unsteady regime of the flow. The strong positive vortex pushes the negative vortex upwards in the wake. The gap flow in the undersurface of the cylinder is strong and the velocity profile overshoots. The cylinder experiences a downward force for certain values of the Reynolds number and gap height. The drag and lift are higher at lower values of the Reynolds number. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

7.
An experimental study of the coupling between fluid dynamic instabilities and an acoustic field is performed for the case of a pipe with annular flow restrictors, representing a segmented solid propellant booster. As long as the distance between the restrictors remains smaller than the length of the flow recovery region behind the upstream restrictor, the fluid flow can amplify the acoustic pereturbations at the frequencies of the acoustic modes, leading to strong resonance for specific flow velocity ranges. A physical explanation is proposed, linking the amplification of the acoustic perturbation to the phase and frequency of vortex shedding from the restrictors. An approximate semi-empirical correlation is developed for the critical Strouhal number of the phenomenon as a function of the restrictor size and other problem parameters.  相似文献   

8.
Flow past symmetrically located side branches mounted in a duct can give rise to pronounced flow oscillations due to coupling between separated shear layers and standing acoustic waves. The acoustically-coupled flows were investigated using digital particle image velocimetry (PIV) in conjunction with unsteady pressure measurements. Global instantaneous, phase- and time-averaged flow images were evaluated to provide insight into the flow physics during flow tone generation. Onset of the locked-on resonant states was characterized in terms of the acoustic pressure amplitude and frequency of the resonant pressure peak. Structure of the acoustic noise source was discussed in terms of patterns of generated acoustic power, which was evaluated by applying the vortex sound theory in conjunction with global quantitative flow imaging and numerical simulation of the acoustic field. In addition to the basic side branch configuration, the effect of bluff rectangular splitter plates located along the centerline of the main duct was investigated. The first mode of the shear layer oscillation was inhibited by the presence of the plates, which resulted in substantial reduction of the amplitude of acoustic pulsations and the strength of the acoustic source.  相似文献   

9.
Vortex shedding resonance of a circular cylinder wake to a forced rotational oscillation has been investigated experimentally by measuring the velocity fluctuations in the wake, pressure distributions over the cylinder surface, and visualizing the flow field with respect to cylinder oscillations. The vortex shedding resonance occurs near the natural shedding frequency at small amplitude of cylinder oscillations, while the peak resonance frequency shifts to a lower value with an increase in oscillation amplitude. The drag and lift forces acting on the cylinder at fixed forcing Strouhal number indicate that the phase lag of fluid forces to the cylinder oscillations increases with an increase in oscillation amplitude, supporting the variation of resonance frequency with oscillation amplitude. The comparative study of the measured pressure distributions and the simultaneous flow visualizations with respect to cylinder rotation shows the mechanisms of phase lag, which is due to the strengthened vortex formation and the modification of the surface pressure distributions.  相似文献   

10.
由仿生学原理构建的可渗透翼型对湍流气动噪声抑制作用已展现良好的应用前景。对NACA 0012可渗透翼型和实体翼型进行了数值计算,得到了声涡相互作用下气动噪声声场和流场,分析了可渗透壁对翼型流场和声场的影响。研究表明,相对实体翼型,可渗透壁通过减小声源强度降低了主纯音噪声声压级幅值和远场总声压级,消除了高阶离散纯音,但对噪声的指向性没有较大改变。进一步的流场分析表明,可渗透壁对翼型气动性能影响不大的情况下能够降低边界层扰动和翼型后缘大尺度涡旋强度,并推迟分离泡转捩和再附位置。  相似文献   

11.
 We propose in this work to characterize the unsteady behavior of a flow generated by wall injection and encountering an obstacle. This sutdy concerns the prediction of the stability of segmented solid propellant rocket motors. The simulation of such a system is studied in cold flow, which makes it possible to analyze the basic phenomena and the energy transfer mechanisms of the flow. The results obtained allow the identification of the vortex structures by visualization inside a shear layer created at the top of an obstacle. The analysis of the pressure field shows that the dynamic parameters (mass flow rate or flow velocity) generate a phenomenon of selective excitation and of longitudinal acoustic modes amplification, which is accompanied by an energy transfer between modes. Received: 30 October 1997 / Accepted: 8 June 1998  相似文献   

12.
The effects of the surface roughness and the turbulence intensity on the dynamic characteristics of the flow induced oscillations of an elastically supported single circular cylinder in a cross flow in the vortex shedding and fluid elastic regions were experimentally investigated. The results of these experiments indicate that, for the vortex shedding region, increasing the surface roughness results in a reduction of the amplitude of oscillation, while in the fluid elastic region, increasing the surface roughness tends to enhance the oscillations. A similar trend for the dynamic response of the cylinder in the vortex shedding region was also observed when the free stream turbulence intensity was varied, while in the fluid elastic region variations in the free stream turbulence intensity were observed to have no drastic effect on the dynamic response of the cylinder.  相似文献   

13.
Vortex–structure interaction noise radiated from an airfoil embedded in the wake of a rod is investigated experimentally in an anechoic wind tunnel by means of a phased microphone array for acoustic tests and particle image velocimetry (PIV) for the flow field measurements. The rod–airfoil configuration is varied by changing the rod diameter (D), adjusting the cross-stream position (Y) of the rod and the streamwise gap (L) between the rod and the airfoil leading edge. Two noise control concepts, including “air blowing” on the upstream rod and a soft-vane leading edge on the airfoil, are applied to control the vortex–structure interaction noise. The motivation behind this study is to investigate the effects of the three parameters on the characteristics of the radiated noise and then explore the influences of the noise control concepts. Both the vortex–structure interaction noise and the rod vortex shedding tonal noise are analysed. The acoustic test results show that both the position and magnitude of the dominant noise source of the rod–airfoil model are highly dependent on the parameters considered. In the case where the vortex–structure interaction noise is dominant, the application of the air blowing and the soft vane can effectively attenuate the interaction noise. Flow field measurements suggest that the intensity of the vortex–structure interaction and the flow impingement on the airfoil leading edge are suppressed by the control methods, giving a reduction in noise.  相似文献   

14.
The turbulent flow around two cylinders in tandem at the sub-critical Reynolds number range of order of 105 and pitch to diameter ratio of 3.7 is investigated by using time-resolved Particle Image Velocimetry (TRPIV) of 1 kHz and 8 kHz. The bi-stable flow regimes including a flow pattern I with a strong vortex shedding past the upstream and the downstream cylinder, as well as a flow pattern II corresponding to a weak alternating vortex shedding with reattachment past the upstream cylinder are investigated. The structure of this “reattachment regime” has been analyzed in association with the vortex dynamics past the downstream cylinder, by means of POD and phase-average decomposition. These elements allowed interconnection among all the measured PIV planes and hence analysis of the reattachment structure and the flow dynamics past both cylinders. The results highlight fundamental differences of the flow structure and dynamics around each cylinder and provide the ‘gap’ flow nature between the cylinders. Thanks to a high-speed camera of 8 kHz, the shear-layer vortices tracking has been possible downstream of the separation point and the quantification of their shedding frequency at the present high Reynolds number range has been achieved. This issue is important regarding fluid instabilities involved in the fluid–structure interaction of cylinder arrays in nuclear reactor systems, as well as acoustic noise generated from the tandem cylinders of a landing gear in aeronautics.  相似文献   

15.
The effects of the surface roughness and the turbulence intensity on the dynamic characteristics of the flow induced oscillations of an elastically supported single circular cylinder in a cross flow in the vortex shedding and fluid elastic regions were experimentally investigated. The results of these experiments indicate that, for the vortex shedding region, increasing the surface roughness results in a reduction of the amplitude of oscillation, while in the fluid elastic region, increasing the surface roughness tends to enhance the oscillations. A similar trend for the dynamic response of the cylinder in the vortex shedding region was also observed when the free stream turbulence intensity was varied, while in the fluid elastic region variations in the free stream turbulence intensity were observed to have no drastic effect on the dynamic response of the cylinder.  相似文献   

16.
An experimental and numerical study of the aeroelastic behaviour of elongated rectangular and square cylinders is presented. The main results are for a rectangular section with an aspect ratio of 2. The experiments were performed with a flexible cylinder clamped at both ends. This configuration leads to unusual lock-in of the vortex shedding with different bending modes, although the final steady oscillations occur in the fundamental mode. The galloping regime is also investigated, and the effect of free-stream turbulence intensity. Critical velocities are detected which do not correspond to calculations using the quasi-steady theory. A simple modelling of galloping is proposed to better fit the experiments, but it is shown that some of the configurations, in turbulent flow, are probably interacting with the vortex shedding and make the modelling inefficient. Numerical simulations on a 2-D rectangular section are presented and the resulting wall pressure distributions are analysed using the proper orthogonal decomposition technique. Indicators are proposed in order to link the proper functions with their contribution to the aerodynamic force components, and then a classification of the proper shapes of the decomposition is done. It is shown by comparison between the static case and forced oscillations, in the galloping range, that secondary vortices inside the shear layer become symmetrical and their effect on the forces is cancelled.  相似文献   

17.
The effect of acoustic resonance on the dynamic lift force acting on the central tube in square and normal triangle tube arrays is investigated experimentally. For each array pattern three different tube spacing ratios, corresponding to small, intermediate and large spacing ratios, are tested. The resonant sound field in the tube array is found to cause two main effects. First, it generates a “sound-induced” dynamic lift due to the resonant acoustic pressure distribution on the surface of the tube, and secondly, it synchronizes vorticity shedding from the tubes and thereby enhances the hydrodynamic lift force due to vortex shedding. The combined effect of these two unsteady lift forces depends on the phase shift between them, which is dictated by the frequency ratio of the acoustic mode to the natural vortex shedding frequencies. When the flow velocity is increased during the coincidence resonance range, the phase shift increases rapidly and therefore the effects of the two lift components change from reinforcing to counteracting each other. For the pre-coincidence lock-on range, the frequency ratio remains larger than unity and the two lift components always reinforce each other. Numerical simulations are also performed to compute the sound-induced lift force, and sound-enhancement coefficients are developed to estimate the effect of sound on the vortex shedding forces. The simulation and experimental results are implemented in a simplified design guide, which can be used to evaluate the dynamic lift forces acting on the tubes during acoustic resonances.  相似文献   

18.
High-frequency limit-cycle oscillations of an airfoil at low Reynolds number are studied numerically. This regime is characterized by large apparent-mass effects and intermittent shedding of leading-edge vortices. Under these conditions, leading-edge vortex shedding has been shown to result in favorable consequences such as high lift and efficiencies in propulsion/power extraction, thus motivating this study. The aerodynamic model used in the aeroelastic framework is a potential-flow-based discrete-vortex method, augmented with intermittent leading-edge vortex shedding based on a leading-edge suction parameter reaching a critical value. This model has been validated extensively in the regime under consideration and is computationally cheap in comparison with Navier–Stokes solvers. The structural model used has degrees of freedom in pitch and plunge, and allows for large amplitudes and cubic stiffening. The aeroelastic framework developed in this paper is employed to undertake parametric studies which evaluate the impact of different types of nonlinearity. Structural configurations with pitch-to-plunge frequency ratios close to unity are considered, where the flutter speeds are lowest (ideal for power generation) and reduced frequencies are highest. The range of reduced frequencies studied is two to three times higher than most airfoil studies, a virtually unexplored regime. Aerodynamic nonlinearity resulting from intermittent leading-edge vortex shedding always causes a supercritical Hopf bifurcation, where limit-cycle oscillations occur at freestream velocities greater than the linear flutter speed. The variations in amplitude and frequency of limit-cycle oscillations as functions of aerodynamic and structural parameters are presented through the parametric studies. The excellent accuracy/cost balance offered by the methodology presented in this paper suggests that it could be successfully employed to investigate optimum setups for power harvesting in the low-Reynolds-number regime.  相似文献   

19.
The effect of feedback control on vortex shedding from two tandem cylinders in cross-flow is investigated experimentally. The objective is to reduce the downstream cylinder response to vortex shedding and turbulence excitations. Feedback control is applied to a resonant case, where the frequency of vortex shedding coincides with the resonance frequency of the downstream cylinder, and to a nonresonant case, in which the shedding frequency is about 30% higher than the downstream cylinder resonance frequency. A “synthetic jet” issuing through a narrow slit on the upstream cylinder is employed to impart the control effect to the flow. The effect of open-loop control, using pure tones and white noise to activate the synthetic jet, is also examined. It is demonstrated that feedback control can significantly reduce the downstream cylinder response to both vortex shedding and turbulence excitations. For example, the cylinder response is reduced by up to 70% in the resonant case and 75% in the nonresonant case. Open-loop control also can reduce the cylinder response, but is less effective than feedback control. The frequency of vortex shedding is found to increase substantially when white noise is applied. This increase in the shedding frequency is higher than the largest frequency shift that could be produced by open-loop tone excitation.  相似文献   

20.
张宇飞  肖志祥  符松 《力学学报》2007,39(3):408-416
通过求解采用ALE方法描述的运动坐标系Navier-Stokes方程组,分析均匀来流下雷诺 数为150的静止和流向振荡的圆柱绕流. 主要研究了强迫振荡频率和较大振幅比 (A/D=0.3-1.2)对圆柱升力、阻力变化特性以及涡脱落模态的影响. 研究表 明,流向振荡圆柱绕流存在多种涡脱落模态,如对称S以及反对称A-I, A-III, A-IV等多种形式;比较研究结果,拓展了各模态下对应的锁定区域,并将其分为5个 子区;A-I模态中圆柱受力较以前所知更复杂;通过分析计算结果,发现最大加速度 比Af_{c}^{2}/Df_{s0}^{2}可能是涡脱落模态(尤其是对称S模态)最有效的控制参数.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号