首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
利用受激拉曼泵浦激发HBr分子至Χ~1Σ~+(1,12)激发态,由相干反斯托克斯-拉曼散射(CARS)光谱确定分子的激发.通过测量CARS谱相对强度,得到了HBr分子Χ~1Σ~+态(1,12)能级的布居数密度为n_1=0.54×10~(13) cm~(-3).在一次碰撞条件下,测量碰撞前后CO_2(00~00,J)态的激光感应荧光强度比,得到CO_2转动态的双指数分布.由二分量指数拟合得到T_a=261 K的低能分布和T_b=978 K的高能分布.结果表明,碰撞后约有65%的分子处于低J态,属于弹性或近弹性的弱碰撞;约有35%的分子处于高J态,属于非弹性的强碰撞.在振动-转动平动(V-RT)能量转移过程中,CO_2(00~00,J)态的总出现速率系数为(1.3±0.3)×10~(-10) cm~3 molecule~(-1)s~(-1);低转动态的平均倒空速率系数为(2.9±0.8)×10~(-10) cm~3 molecule~(-1)s~(-1).总的出现速率系数比平均倒空速率系数小,但在量级上保持一致.对CO_2 J=60-74高转动态,随着J值的增加,质心平移温度和质心平移能的平均改变增加.对低转动态,在碰撞过程中,J态既可能出现也可能被倒空,平移能的改变不易确定.  相似文献   

2.
利用高分辨率瞬时激光光谱技术,研究了H2(1,1)与CO2碰撞中的能量转移。受激拉曼泵浦把H2(0,1)激发到H2(1,1)能级,H2(1,1)与CO2碰撞,使CO2的振转态得到布居,通过泛频吸收得到CO2(0000)和(0001)的转动态分布,测量H2(0,1)和H2(1,1)的CARS(相干反斯托克斯拉曼散射)谱,得到这二个能级布居数密度之比,而H2(0,1)密度通过在池温300K下H2(v=0)的转动Boltzmann分布得到。碰撞转移速率系数由一个速率方程得到,对于CO2(0000)J=48~76,速率系数ktr从(3.9±0.8)×10-11单调递增到(1.4±0.3)×10-10 cm3·molecule-1·s-1,而对于(0001)J=5~33,速率系数均在(4.3±0.9)×10-12cm3·molecule-1·s-1附近。随H2(1,1)的激发,在0.5μs内测量CO2(0000)和(0001)原生态的转动布居,得到玻尔兹曼转动温度Trot,对于(0000)态,有Trot=1 100K,对于(0001)态有Trot=310K,与池温接近。利用泛频吸收线的多普勒增宽测量,得到CO2各转动态的实验室平移温度Ttran和质心平移温度Trel,对于(0000)J=48和76,Trel分别为454和1 532K,平动能平均变化在231~1 848cm-1之间,而对于(0001)J=5~33,平均平动能基本无变化。  相似文献   

3.
研究了高位振动态RbH(Х1Σ+,v″=15-21)与CO2碰撞转移过程。脉冲激光激发RbH至高位态,利用激光感应荧光 光谱(LIF)得到RbH(Х1Σ+,v″)与CO2的猝灭速率系数,。利用激光泛频光谱技术,测量了CO2(0000,J)高转动态分布。得到了转动温度,从而获得了平均转动能和转动能的变化<ΔErot>,发现。对于v"=16,证实了振动—振动能量转移的4-1近共振过程。在一次碰撞条件下,通过速率方程分析,得到RH(v")-CO2振转速率系数。对于v"=15,J=32-48,速率系数在1.25-0.33×10-13cm3s-1.之间,对于v"=21,速率系数在2.47-1. 53×10-13cm3s-1之间,其能量相关性是明显的。  相似文献   

4.
受激发射泵浦得到的LiCs高位振动态与CO_2碰撞,研究了LiCs不同能量对碰撞能量转移过程的影响.利用高分辨率瞬时激光感应荧光(LIF)测量得到CO_2(0000,J=2-74)原生转动态分布.转动布居数的半对数描绘给出了一个双指数结构,得到了一个T_a=660±73K[对LiCs(E=4300cm~(-1))]和550±61K[对LiCs(E=3700cm~(-1))]的低能分布,一个T_b=2380±261K[对LiCs(E=4300cm~(-1))]和1980±217K[对LiCs(E=3700cm~(-1))]的高能分布,低能分布属于弹性或弱非弹性碰撞,高能分布属于强非弹性碰撞.转动分布对LiCs能量是敏感的.但弹性与非弹性分支比基本是相同的.在一次碰撞的条件下,测量了各J态的出现和倒空速率系数,它们仅弱依赖于LiCs激发能.出现和倒空速率系数对不同LiCs能量基本一致,是振动-转动/平移弛豫轨道的重要证据.  相似文献   

5.
受激发射泵浦激发K2到X1Σ+g(v″=40,53)振动态。K2(v″)与CO2碰撞,瞬时泛频激光诱导荧光(LIF)测得CO2(0000,J)的初生态布居,其半对数描绘给出了双指数分布。在池温为600K时,对于v″=40和53,低转动温度T,分别为581±70K与621±76K,而高转动温度分别为1395±167K与1556±187K。T1和T2分别对应于弱碰撞和强碰撞。转动分布对K2(v″)的能量是敏感的,但弱,强碰撞分支比基本相同。利用瞬时泛频LIF强度的相对变化,得到CO2 J态的出现和倒空速率系数。确定了CO2平均角动量改变<ΔJ>和平均反冲速度改变<Δʋrel>间的关系。对于相同角动量的改变,K2(v″)能量增加25%,反冲速度增加约47%。对于K2(v″=40,53)- CO2碰撞,得到了能量转移概率分布函数P(ΔE)。  相似文献   

6.
在K_2+CO_2中,受激发射泵浦得到K_2(E=3 500和4 000cm~(-1))高位振动态,研究了高振动激发K_2与CO_2碰撞产生的CO_2全分辨转动态分布。利用高分辨瞬时激光诱导荧光(LIF)测量了CO_2(0000)J=2~74的转动和平移能量轮廓,利用双高斯函数拟合,分别确定各转动态的产生和倒空线宽,从而得到碰撞产生的Doppler展宽、平移温度和平移能。对于K_2不同的激发能E,能量转移的机制是相似的,为振动-转动/平移弛豫机制。但碰撞出现部分的平移温度均超出池温,而碰撞倒空部分的平移温度均略低于池温,平移能随E的增加而增大,E增加14%,平移能增加40%。CO_2(0000)转动态分布的半对数描绘给出了双指数分布,对于K_2E=3 500cm~(-1),低J态分布T_a=(523±60)K,高J态分布T_b=(1 890±210)K。Ta接近池温,说明低J态为近弹性碰撞,属单量子弛豫过程,而高J态为非弹性碰撞,属多量子驰豫过程。对于K_2E=4 000cm~(-1)同样有双指数行为,低J分布T_a=(620±65)K,高J分布T_b=(2 240±250)K。高振动态K_2(E)与CO_2碰撞,E=4 000cm~(-1)比E=3 500cm~(-1)的Ta和Tb均约高19%,说明转动分布对于K_2不同能量是敏感的,但弹性和非弹性分支比是基本相同的,弱碰撞约占82%,强碰撞约占18%。  相似文献   

7.
激发态Na2与H2碰撞,使H2(v=3,J=3)得到布居,在H2和He总气压为800Pa及温度为700K的条件下,利用相干反斯托克斯拉曼散射(CARS)光谱技术研究了H2(3,3)与H2(He)间转动能量转移过程。改变CARS激光束与激发Na2的激光之间的延迟时间,测量He不同摩尔配比时H2(3,J)态CARS谱强度的时间演化,得到H2(3,3)的总弛豫速率系数分别为=(21±5)×10-13cm3s-1和=(5.6±1.6)×10-13cm3s-1。测量H2(3,J)各转动态的相对CARS谱强度,由速率方程分析,得到H2(3,3)+H2→H2(3,J)+H2中,对于J=2,4,转移速率系数分别为11±4和8.2±3.1cm3s-1。在H2(3,3)+He→H2(3,J)+He中,对于J=2,4,转移速率系数分别为3.1±1.2和2.1±0.7cm3s-1。对于H2(3,3),单量子弛豫׀∆J׀=1约占该态总弛豫率的90%。  相似文献   

8.
利用简并受激超拉曼泵浦激发HBr(Χ~1Σ~+ν~″=5)振动态,由高分辨瞬时激光感应荧光(LIF)探测碰撞弛豫后HBr(ν~″≤5)各振动态时间分辨布居数的演化过程,得到了HBr(ν~″=5)分别与分子M(H_2,N_2,CO_2和HBr)的碰撞弛豫速率系数。对于M=CO_2,近共振的1-1振动-振动(V-V)能量转移是有效的,这一结果表明CO_2强的红外振动模对近共振V-V能量转移是有利的。而红外禁戒跃迁的N_2(0-1)的近共振V-V转移虽然也能观察到,但相应速率系数比CO_2小2个量级。碰撞分子的振动跃迁红外活性越强,能量转移速率系数越大。在HBr(ν~″=5)+HBr的自弛豫过程中,单量子弛豫率占总弛豫率的70%,而双量子弛豫约占25%。在HBr(ν~″=5)+H_2中,只有2-1的V-V近共振过程是重要的。同时还研究了V-V近共振能量转移速率系数与温度变化的关系,对于CO_2的1-1近共振,V-V能量转移速率系数随温度的增加而减小;对于H_2和HBr,其弛豫速率系数随温度的增加而增加;对于N_2,其弛豫速率系数随温度的增加而缓慢增加。  相似文献   

9.
K(5P)与H2反应生成KH(v′′=0-3)振动态,测量了各振动态的转动分布,转动玻尔兹曼温度为455K,而振动温度为1604K,这个接近池温的转动温度和很高的振动温度是共线碰撞机制的有力证据.利用高分辨率瞬时吸收技术得到各振动能级上转动态的布居分布,从而得到反应碰撞转移速率系数,对于v′′=0、1、2、3,分布别为(3.45±0.86)×10-13、(1.35±0.34)×10-13、(6.28±1.57)×10-14和(2.35±0.59)×10-14cm3s-1. 同时研究了K(5P)-H2的电子-振动能量转移,利用相干反斯托克斯拉曼散射(CARS)探测H2的振动态分布.扫描CARS谱发现v=1、2、3上有布居. 由CARS峰值得到H2(0,1)、(1,1)、(2,1)、(3,1)和(3,3)布居之比. H2(0,1)布居由450K的转动分布得到,因而得到(1,1)、(2,1)、(3,1)和(3,3)态的布居,从而获得K(5P)-H2(1,1)、(2,1)、(3,1)和(3,3)的电子-振转速率系数分别是(1.1±0.3)×10-13、(9.3±2.5)×10-14、(4.2±1.1)×10-14和(3.8±1.0)×10-14cm3s-1.  相似文献   

10.
利用相干反斯托克斯拉曼光谱(CARS)探测技术,研究了K2的 (V=46-61)与H2间的电子-振转动能级的碰撞转移,扫描CARS谱确认了仅在H2的V=2,J=0,1,2及V=1,J=2能级上有布居,用n1,n2,n3,n4,分别表示(2,0) ,(2,1) ,(2,2) ,(1,2)上的粒子数密度,从CARS谱峰值得到n1/n4,n2/n4,n3/n4 分别为3.3±0.5,2.2±0.3,2.0±0.3,有88%粒子处在V=2能级上,而在V=1能级上有12%。转移能配置到振动,转动,平动的比例分别为0.53,0.01,0.46,能量主要分配在振动和平动上,在573K和5×103 Pa条件下,通过求解速率方程组和对时间分辨CARS线强度分析得到碰撞转移速率系数k12=(3.3±0.7) ×10-14 cm3s-1和k2=(1.4±0.3)×10-14cm3s-1。  相似文献   

11.
利用相干反斯托克斯拉曼光谱(CARS)探测技术,研究了K2的 (V=46-61)与H2间的电子-振转动能级的碰撞转移,扫描CARS谱确认了仅在H2的V=2,J=0,1,2及V=1,J=2能级上有布居,用n1,n2,n3,n4,分别表示(2,0) ,(2,1) ,(2,2) ,(1,2)上的粒子数密度,从CARS谱峰值得到n1/n4,n2/n4,n3/n4 分别为3.3±0.5,2.2±0.3,2.0±0.3,有88%粒子处在V=2能级上,而在V=1能级上有12%。转移能配置到振动,转动,平动的比例分别为0.53,0.01,0.46,能量主要分配在振动和平动上,在573K和5×103 Pa条件下,通过求解速率方程组和对时间分辨CARS线强度分析得到碰撞转移速率系数k12=(3.3±0.7) ×10-14 cm3s-1和k2=(1.4±0.3)×10-14cm3s-1。  相似文献   

12.
受激发射泵浦激发K2到X1Σ+g(v″=40,53)振动态.K2(v″)与CO2碰撞,瞬时泛频激光诱导荧光(LIF)测得CO2(0000,J)的初生态布居,其半对数描绘给出了双指数分布.在池温为600 K时,对于v″=40和53,低转动温度T,分别为581±70 K与621±76 K,而高转动温度分别为1395±167 K与1556±187K.T1和T2分别对应于弱碰撞和强碰撞.转动分布对K2(v″)的能量是敏感的,但弱,强碰撞分支比基本相同.利用瞬时泛频LIF强度的相对变化,得到CO2J态的出现和倒空速率系数.确定了CO2平均角动量改变ΔJ和平均反冲速度改变Δvrel间的关系.对于相同角动量的改变,K2(v″)能量增加25%,反冲速度增加约47%.对于K2(v″=40,53)-CO2碰撞,得到了能量转移概率分布函数P(ΔE).  相似文献   

13.
用HeCd激光器的4416nm线激发Na2分子到B1Πu电子态,记录了Na原子的跃迁和Na2分子的A1Σ+u-Χ1Σ+g的谱带。由Na与Na2激发态发射的光谱及其强度可以认定在NaNa2系统中的碰撞过程,Na原子线是Na2(B1Πu)到Na(3P)的碰撞能量转移产生的,预解离过程也可产生原子线。而A1Σ+u-Χ1Σ+g谱带是由B1Πu到21Σ+g的碰撞转移后再由21Σ+g到A1Σ+u的辐射而引起的。在360℃,根据辐射衰变率和荧光强度,得到Na2(B1Πu)到Na2(21Σ+g)碰撞转移率系数为57×10-10cm3·s-1,而B1Πu的预解离率为27×106s-1。  相似文献   

14.
用532.0 nm激光激发Na2分子到B1Πu电子态,记录了Na(3P)原子的跃迁和Na2分子的A1Σ+u-Χ1Σ+g的谱带.由Na与Na2激发态发射的光谱及其强度可以认定在Na-Na2系统中的碰撞过程,Na(3P)原子线是Na2(B1Πu)到Na(3P)的碰撞能量转移产生的,预解离过程也可产生原子线.而A1Σ+u-Χ1Σ+g谱带是由B1Πu到21Σ+g的碰撞转移后再由21Σ+g到A1Σ+u的辐射而引起的.在360℃,根据辐射衰变率和荧光强度,得到Na2(B1Πu)到Na2(21Σ+g)碰撞转移率系数为7.1×10-10 cm3s-1,而B1Πu的预解离率为2.3×106 s-1.  相似文献   

15.
研究了高位振动态RbH(X1∑+,v″=15~21)与CO2碰撞转移过程.脉冲激光激发RbH至高位态,利用激光感应荧光光谱(LIF)得到RbH(X1∑+,v″)与CO2的猝灭速率系数kv″(CO2),kv″=21(CO2)=2.7kv″=15(CO2).利用激光泛频光谱技术,测量了CO2(0000,J)高转动态分布,得到了转动温度,从而获得了平均转动能<Erot>和转动能的变化<△Erot>,发现<△Erot>v″=21≈2.9<△Erot>v″=15.对于v″=16,证实了振动—振动能量转移的4-1近共振过程.在一次碰撞条件下,通过速率方程分析,得到RH(v″)-CO2振转速率系数.对于v″=15,J=32-48,速率系数在1.25-0.33×10-13 cm3 s-1.之间;对于v″=21,速率系数在2.47-1.53×10-13 cm3 s-1之间,其能量相关性是明显的.  相似文献   

16.
利用分波法研究了低温及极低温下基态H和Br原子沿HBr(X1Σ+)分子相互作用势发生的弹性碰撞. 在1.0×10-11-1.0×10-3 a.u.的碰撞能区内通过数值求解原子-原子碰撞的薛定鄂方程, 计算了这一弹性碰撞的总截面和各分波截面, 讨论了各分波截面对总弹性截面的贡献. 结果表明在非常低的温度下这一弹性散射的总截面值很大、且几乎为一常数. 分析指出在极低能区内总弹性截面的形状主要由s分波截面的形状决定. 在总弹性截面上存在着2个较强的形状共振, 一个位于2.276×10-4 a.u., 另一个位于4.440×10-4 a.u. 计算表明前者主要来自于f和g分波的联合贡献, 后者主要来自于l = 5和l = 7分波的联合贡献. 虽然在f分波上还存在一个形状共振、且在直到l = 8的其它分波中也都存在强度不同的形状共振, 但它们都被淹没在较强的总弹性截面中. 同时计算还表明, 高于l = 10的分波对总弹性截面已无实质贡献.  相似文献   

17.
利用简并受激超拉曼泵浦激发NaH基态到高位振动态(ν″=14,J″=20)。研究了NaH(14,20)与CO_2(00°0)间的振转能量转移。利用吸收系数和瞬时Doppler线宽,得到不同池温下NaH(14,20)分子密度,测量CO_2(00°0,J)与NaH高振动态碰撞前后的瞬时泛频激光感应荧光谱线的相对强度,确定了CO_2(00°0,J=2~80)的初生态布居,它们呈现双指数转动分布。拟合实验数据得到两个转动温度T_(rot)=(650±80)和(1 531±150)K。较冷的分布约占CO_2(00°0)的79%,它是由弹性或弱非弹性碰撞产生的,因而CO_2只有很小的转动激发。另有21%的CO_2(00°0)较大地增加了转动能,故有较热的转动温度。对碰撞产生的CO_2(00°0,J)进行高分辨率瞬时泛频荧光谱线的轮廓测量,得到各转动态平移能的改变。对于CO_2(00°0,J=56~80),转移能从582cm~(-1)(对于J=60)增加到2 973cm~(-1)(对于J=80)。探测转动态布居数的改变,得到各转动态的产生速率系数k_(app)~J之和为(7.2±1.8)×10~(-10) cm~3·mol~(-1)·s~(-1),而平均倒空速率系数〈kdep〉=(6.9±1.7)×10~(-10)cm~3·mol~(-1)·s~(-1)。  相似文献   

18.
为了从理论上解释Sun等在CO(A1 Π ,v =3 )和He碰撞实验中转动传能截面的反常现象 ,考虑一级含时波恩近似、长程相互作用势和直线轨道近似 ,建立了Π态双原子分子由于Λ分裂引起量子干涉的理论模型 .运用这一理论模型 ,成功的解释了实验中碰撞伴为He时转动传能截面的反常现象 :σε→ε′△J =0 <σε→ε′△J =± 1 .首先介绍了碰撞诱导转动传能中量子干涉效应的研究进展 ,然后建立了Π态双原子分子由于Λ分裂引起量子干涉的理论模型 ,最后对所得结果进行了讨论  相似文献   

19.
利用北京正负电子对撞机 (BEPC)上的北京谱仪 (BES)收集的 7 8× 1 0 6 个J ψ事例 ,研究了J ψ→Σ0 Σ0 衰变 .其衰变分支比为BR(J ψ→Σ0 Σ0 ) =( 0 97±0 0 4± 0 2 4 )× 1 0 - 3,角分布具有 dNdcosθ=N0 ( 1 +αcos2 θ)的形式 ,α值等于 -0 2 1± 0 2 7± 0 1 3 .  相似文献   

20.
本文利用受激Raman抽运,选择性地制备了C_2H_2分子电子基态的红外非激活振动能级的单一转动态(X~1∑~+,v″=1,J″=9,11,13),并从紫外激光诱导的A~1Au(v′=1)←X~1∑~+(v″=1)荧光谱,直接测定上述三个转动态的C_2H_2—C_2H_2碰撞的消激活速率常数,它们分别为(7.96±1.04)×10~(-10),(8.79±0.97)×10~(-10),(8.76±0.88)×10~(-10)cm~3~(-1),以及由这些初始转动态向其它不同转动态(v′=1,J′=1,3,5,7,9,11,13,15)多量子跃迁转移的激活速率常数。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号