首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The interaction of methanol with clean and oxygen-covered Pt(111) surfaces has been examined with high resolution electron loss spectroscopy (EELS) and thermal desorption spectroscopy (TDS). On the clean Pt(111) surface, methanol dehydrogenated above 140 K to form adsorbed carbon monoxide and hydrogen. On a Pt(111)-p(2 × 2)O surface, methanol formed a methoxy species (CH3O) and adsorbed water. The methoxy species was unstable above 170 K and decomposed to form adsorbed CO and hydrogen. Above room temperature, hydrogen and carbon monoxide desorbed near 360 and 470 K, respectively. The instability of methanol and methoxy groups on the Pt surface is in agreement with the dehydrogenation reaction observed on W, Ru, Pd and Ni surfaces at low pressures. This is in contrast with the higher stability of methoxy groups on silver and copper surfaces, where decomposition to formaldehyde and hydrogen occurs. The hypothesis is proposed that metals with low heats of adsorption of CO and H2 (Ag, Cu) may selectively form formaldehyde via the methoxy intermediate, whereas other metals with high CO and H2 chemisorption heats rapidly dehydrogenate methoxy species below room temperature.  相似文献   

2.
A study of the adsorption/desorption behavior of CO, H2O, CO2 and H2 on Ni(110)(4 × 5)-C and Ni(110)-graphite was made in order to assess the importance of desorption as a rate-limiting step for the decomposition of formic acid and to identify available reaction channels for the decomposition. The carbide surface adsorbed CO and H2O in amounts comparable to the clean surface, whereas this surface, unlike clean Ni(110), did not appreciably adsorb H2. The binding energy of CO on the carbide was coverage sensitive, decreasing from 21 to 12 kcalmol as the CO coverage approached 1.1 × 1015 molecules cm?2 at 200K. The initial sticking probability and maximum coverage of CO on the carbide surface were close to that observed for clean Ni(110). The amount of H2, CO, CO2 and H2O adsorbed on the graphitized surface was insignificant relative to the clean surface. The kinetics of adsorption/desorption of the states observed are discussed.  相似文献   

3.
The decomposition of D2CO, CH3OD and HCOOH on Pt(110) and of D2CO on Pt(S)-[9(111) × (100)] was studied by molecular beam relaxation spectroscopy. D2CO and CH3OD evolved CO and H2 via a desorption limited sequence of elementary steps. The rate constant for CO desorption from Pt(110) was 6 × 1014exp(? 35.5 kcalgmol · RT) s?1, and from Pt(S)-[9(111) × (100)] it was 1 × 1015 exp(?36.2 kcalgmol·RT) s?1. On Pt(110) the rate constant for hydrogen formation was 100 ± 1exp(?24 kcalgmol·RT) m?2atom · s. On Pt(S)-[9(111) × (100)] two pathways for H2 formation existed with rate constants of 8.7 × 10?2exp( ?24.9 kcalgmol· RT) cm2atom· s and 3.2 × 10?3 exp(?19.5 kcalgmol·RT) cm2atom· s. These pre-exponential factors are in order of magnitude agreement with values typical of hydrogen recombination on other metals. When a small amount of sulfur ( ~ 0.1 ML) was adsorbed on the stepped Pt surface, only one pathway for H2 formation existed due to blockage of stepped sites. A similar result was obtained when a beam of CO was impinged on the surface. Formic acid decomposed via a branched process to form primarily CO2 and H2.  相似文献   

4.
The relative acidities of a number of Brönsted acids have been established on the Ag(110) surface under UHV conditions. For acids which react completely with adsorbed oxygen atoms on this surface to form H2O, relative acidities were determined by means of acid-base titration reactions. Adsorbed species such as carboxylates, alkoxides, etc., were formed by reaction of the parent acids with O(a) and then displaced from the surface by titration with stronger acids. Relative acidities of the acids which did not react to completion with O(a) were established on the basis of their relative extents of reaction. The relative acidity scale on Ag(110), according to the reaction BH(g) + B'(a) B'H(g) + B(a) was found to be HCOOH ≈ CH3COOH>C2H5OH> C2H2>CH3OH>C3H6, H2O>C2H4, C2H6, H2. This order is in excellent agreement with the acidity scale for these species in the gas phase according to BH(g)B?(g) + H+ (g); it cannot be explained by aqueous dissociation constants or homolytic bond dissociation energies. This result is in accord with the appreciable anionic character of the adsorbed species, since the electron affinity of the base, B, is a strong thermodynamic factor in the acidity in the gas phase. Both XPS and UPS results for adsorbed species on the Ag(110) surface are consistent with this interpretation.  相似文献   

5.
The oxidation of H2C16O by adsorbed 18O was studied on an Cu(110) sample by temperature programmed reaction spectroscopy. Formaldehyde exchanged its oxygen with surface 18O upon adsorption to yield H2C18O(a) and 16O(a). Formaldehyde was also oxidized by surface 16O and 18O atoms to H2COO which subsequently released one of the hydrogen atoms to form HCOO. The evolution of H2 from the Cu(110) surface was desorption limited, and the low pre-exponential factor for the recombination of the surface hydrogen atoms suggested stringent requirement on the trajectories of the colliding partners. The formate was very stable and dissociated at elevated temperatures to simultaneously yield H2 and CO2. The surface concentration of 18O exerted a pronounced affect on the activity of the oxidation of formaldehyde on Cu(110).  相似文献   

6.
The flash decomposition of CH3COOH was studied on a clean nickel (110) surface following adsorption at 30° C in order to access the applicability of chemical reaction rate theory to a homologous series of reactants on a well-defined surface. As was observed for formic acid, acetic acid adsorbed at 30° C to yield gaseous H2O and to form islands of adsorbed anhydride intermediates; the decomposition proceeded by a two-dimensional auto-catalytic mechanism to form H2, CO2, Co and surface carbon. The decomposition of the anhydride was rate determining for the formation of CO2 and H2. The rate of decomposition was well described by the equation governing the formic acid decomposition on the same surface. The activation energy for this first order decomposition was determined to be 28.2 kcalgmol and the pre-exponential factor, v, was found to be 6.4 × 1014 s?1 with a fraction of initiation sites of 0.004. These values were nearly the same as those observed for the decomposition of HCOOH, suggesting identical intramolecular mechanisms for the unimolecular decomposition of the adsorbed intermediates. The relative values of v for the decomposition of HCOOH, DCOOH and CH3COOH indicated that the motion of the H, D or CH3 group was involved in the rate-limiting step.  相似文献   

7.
The chemisorption, condensation, desorption, and decomposition of methanol, both CH3OH and CH3OD, on a clean Ni(110) surface have been characterized using high resolution electron energy loss spectroscopy, temperature programmed reaction spectroscopy, and low energy electron diffraction. The vibrational spectrum of the saturated chemisorbed layer, 7.4 × 1014 molecules cm?2, is almost identical to the infrared spectrum of liquid or solid methanol. Condensation of multilayers of methanol is facile at 80 K. The only quasi-stable intermediate isolated during the decomposition is a methoxy species, CH3O, which decomposes thermally to CO and H. The evolution of both CO and H2 occurs in desorption limited processes.  相似文献   

8.
Methanol adsorption and reaction has been studied on cerium oxide thin films that were vapor deposited on Ru(0 0 0 1). The methanol behavior was examined as a function of temperature and Ce oxidation state. Methanol reacts at low temperatures with fully oxidized CeO2 to produce water at 200 K while formaldehyde and methanol desorb near 560 K. This leads to the reduction of the ceria. On reduced ceria, more methanol can be adsorbed and it undergoes more extensive decomposition producing CO and H2 near 640 K in addition to formaldehyde and water. As the degree of ceria reduction increases, more H2 and less H2O are produced. TPD experiments using isotopically labeled CH3OD show that deuterated water is produced from the oxidized surface at low temperatures, whereas the deuterium is stabilized on the reduced surface and is incorporated into the dihydrogen that desorbs near 600 K. High resolution C 1s and O 1s XPS and C k-edge NEXAFS measurements were performed to quantify the amount of methanol adsorbed and to identify the adsorbed species.  相似文献   

9.
The flash decomposition of DCOOH was studied on a clean nickel (110) surface following adsorption at 37°C. The reaction proceeded by a two-dimensional autocatalytic mechanism to form D2, CO2 and CO products. The results indicated DCOOH adsorbed dissociatively at 37°C by splitting off H2O and forming an adsorbed molecule composed of DCO and DCOO. Above ten percent of saturation coverage these molecules formed a condensed phase or island structure. The decomposition of the molecules was rate determining for the formation of CO2 and D2 products. Theoretical calculations for branched chain mechanisms and coadsorption experiments with CO and H2 separately with DCOOH indicated the intermediate involved in the explosion was not associated with the observed product molecules. The intermediate in the explosive decomposition was shown by interrupted flashes to be stable at 37°C. The autocatalytic flash decomposition curves were explained by reaction occurring at bare metal sites within the islands, and as product molecules desorbed the number of sites increased, causing the rate to accelerate. The rate of decomposition was well described by the equation Rate = ?k(ccI)(cI ?c + fcI), where c is the surface concentration, cI is the initial surface concentration, and f is the density of initiation sites. The activation energy of 26.6kcal/mol was determined from heating rate variation. The narrow flash curves were fit with a first order pre-exponential factor of 1.6 × 1015 sec?1 with a density of initiation sites of 0.004.  相似文献   

10.
The adsorption and reaction of methanoi (CH3OH), methyl formate (CH3OCHO) and formaldehyde (H2CO) on clean and oxygen-covered Cu(110) surfaces has been studied with EELS, UPS and thermal desorption spectroscopy (TDS). The clean surface is relatively unreactive but adsorbed oxygen readily attacks the hydroxyl proton and formyl carbon atoms to generate the intermediate methoxy (CH3O) and formate (HCOO). Methyl formate is split into two intermediates, methoxy and formate. By correlating the three techniques we analyse (a) the condensed multilayer at 90 K; (b) the weakly bound molecular monolayer states prior to dissociation or reaction and (c) the reactive intermediates at higher temperatures. Formaldehyde forms the surface polymer polyoxymethylene [(CH2O)n] in the monolayer on Cu(110) which subsequently reacts with oxygen to generate formate. No molecular formaldehyde was observed above 120 K. Correlation of the EELS and UPS results for polyoxymethylene shows that an earlier interpretation by Rubloff et al. [Phys. Rev. B14 (1976) 1450] of anomalous shifts in the formaldehyde UPS spectrum on surfaces is incorrect, and due simply to the new polymeric structure of surface formaldehyde. Methyl formate coordinates to copper via the carbonyl lone pair orbital and methanol via the oxygen lone pair orbital. No evidence was found for methyl formate synthesis by dimerization of formaldehyde (the Tischenko reaction) or dehydrogenation of methanol on the clean Cu(110) surface. These latter reactions are facile over copper catalysts at atmospheric pressure. The success of the oxidation experiments and the failure of the synthesis reactions in UHV is a consequence of the pressure dependence of the equilibrium constants for the different reactions. As found previously in Fischer-Tropsch studies, condensation reaction equilibria are pressure dependent and product formation is considerably suppressed at UHV pressures.  相似文献   

11.
On the surface of NaF the adsorption isotherms of H2O, D2O, CH3OH, C3H3OH and 1-C3H7OH as well as the infrared spectra of H3O, D2O, dilute HDO, CH3OH and CH3OD were measured. The adsorption temperatures of H3O (253–308 K) were within the phase transition region where two phases of low and high density coexist, while those of CH3OH, C2H5OH and 1-C3H3OH were yet within a super-critical region. The entropy of the 2D condensed H2O on NaF was found to be 14.0 cal K?1 mol?1, which suggests that the condensed phase of water on NaF is liquid-like. The OD stretching band of dilute HDO in the 2D condensed water gives a maximum adsorption at ca. 2530 cm?1 with a half width of ca. 150 cm?1, being in good agreement with that in liquid water. Comparison of the integrated absorbance of the D2O bending mode with that of the OD stretching mode suggests that the cluster size of the 2D condensed water on NaF decreases with increasing temperature. The 2D critical temperature and the occupied areas of these adsorbates enable us to conclude that the compatibility of the molecular size with the surface lattice is not important in the occurrence of the 2D condensation of the hydrogen-bonding molecules on NaF and that adsorbed molecules are randomly oriented on the surface to the extent similar to that in 3D liquid state.  相似文献   

12.
The decomposition of HCOOD was studied on Ni(100). Low temperature adsorption of HCOOD resulted in the desorption of D2O, CO2, CO, and H2. The D2O was evolved below room temperature. CO2 and H2 were evolved in coincident peaks at a temperature above that at which h2 desorbed following H2 adsorption and well above that for CO2 desorption from CO2 adsorption; CO desorbed primarily in a desorption limited step. The decomposition of formic acid on the clean surface was found to yield equal amounts of H2, CO, and CO2 within experimental error. The kinetics and mechanism of the decomposition of formic acid on Ni (110) and Ni(100) single crystal surfaces were compared. The reaction proceeded by the dehydration of formic acid to formic anhydride on both surfaces. The anhydride intermediate condensed into islands due to attractive dipole-dipole interactions. Within the islands the rate of the decomposition reaction to form CO2 was given by:
Rate = 6 × 1015 exp{?[25,500 + ω(ccsat)]/RT} × c
, where c is the local surface concentration, csat is the saturation coverage for the particular crystal plane, and ω is the interaction potential. The interaction potential was determined to be 2.7 kcal/mole on Ni(110) and 1.4 kcal/mole on Ni(100); the difference observed was due to structural differences of the surfaces relating to the alignment of the dipole moments within the islands. These attractive interactions resulted in an autocatalytic reaction on Ni(110), whereas the interaction was not strong enough on Ni(100) to sustain the autocatalytic behavior. Formic acid decomposition oxidized the Ni(100) surface resulting in the formation of a stable surface oxide. The buildup of the oxide resulted in a change in the selectivity reducing the amount of CO formed. This trend indicated that on the oxide surface the decomposition proceeded via a formate intermediate as on Ni(110) O.  相似文献   

13.
Thermal desorption studies of chemisorbed D2 and D2O on a reduced SrTiO3(111) surface reveal that D2 causes the reduction of the crystal, whereas D2O causes its oxidation. Thermal desorption of H218O indicates that there is a 15% exchange between the oxygen in the adsorbed water molecules and the lattice oxygen.  相似文献   

14.
The interaction of O2, CO2, CO, C2H4 AND C2H4O with Ag(110) has been studied by low energy electron diffraction (LEED), temperature programmed desorption (TPD) and electron energy loss spectroscopy (EELS). For adsorbed oxygen the EELS and TPD signals are measured as a function of coverage (θ). Up to θ = 0.25 the EELS signal is proportional to coverage; above 0.25 evidence is found for dipole-dipole interaction as the EELS signal is no longer proportional to coverage. The TPD signal is not directly proportional to the oxygen coverage, which is explained by diffusion of part of the adsorbed oxygen into the bulk. Oxygen has been adsorbed both at pressures of less than 10-4 Pa in an ultrahigh vacuum chamber and at pressures up to 103 Pa in a preparation chamber. After desorption at 103 Pa a new type of weakly bound subsurface oxygen is identified, which can be transferred to the surface by heating the crystal to 470 K. CO2 is not adsorbed as such on clean silver at 300 K. However, it is adsorbed in the form of a carbonate ion if the surface is first exposed to oxygen. If the crystal is heated this complex decomposes into Oad and CO2 with an activation energy of 27 kcal/mol(1 kcal = 4.187 kJ). Up to an oxygen coverage of 0.25 one CO2 molecule is adsorbed per two oxygen atoms on the surface. At higher oxygen coverages the amount of CO2 adsorbed becomes smaller. CO readily reacts with Oad at room temperature to form CO2. This reaction has been used to measure the number of O atoms present on the surface at 300 K relative to the amount of CO2 that is adsorbed at 300 K by the formation of a carbonate ion. Weakly bound subsurface oxygen does not react with CO at 300 K. Adsorption of C2H4O at 110 K is promoted by the presence of atomic oxygen. The activation energy for desorption of C2H4O from clean silver is ~ 9 kcal/mol, whereas on the oxygen-precovered surface two states are found with activation energies of 8.5 and 12.5 kcal/mol. The results are discussed in terms of the mechanism of ethylene epoxidation over unpromoted and unmoderated silver.  相似文献   

15.
本文利用266 nm波长的激光及程序升温脱附的方法研究了甲醇在ZnO(0001)表面的光催化反应. TPD结果显示部分的CH3OH以分子的形式吸附在ZnO(0001)表面,而另外一部分在表面发生了解离. 实验过程中探测到H2,CH3·,H2O,CO,CH2O,CO2和CH3OH这些热反应产物. 紫外激光照射实验结果表明光照可以促进CH3OH/CH3O·解离形成CH2O,在程序升温或光照的过程中它又可以转变为HCOO-. CH2OHZn与OHad反应在Zn位点上形成H2O分子. 升温或光照都能促进CH3O·转变为CH3·. 该研究对CH3OH在ZnO(0001)表面的光催化反应机理提供了一个新的见解.  相似文献   

16.
An analysis has been made of on- and off-specular electron energy loss spectra (EELS) from C2H4 and C2D4 adsorbed on a clean Ni(110) and also a carbided Ni(110) surface. The carbided surface was prepared by heating the clean Ni surface in ethylene to 573 K or above. EELS spectra were obtained using a Leybold-Heraeus spectrometer at a beam energy of 3.0 eV and with a resolution of ca. 6.5 meV (ca. 50 cm?1).The loss spectrum from ethylene at low temperatures (110 K) showed principal features at 3000 (w), 1468 (w), 1162 (s), 879 (w) and 403 cm?1 (s) (C2D4 adsorption) and 2186 (w), 1258 (ms), 944 (ms), 645 (w) and 400 cm?1 (s) (C2D4 adsorption). The overall pattern of wavenumbers and intensifies of the C2H4/C2D4 loss peaks is very similar in form (although systematically different in positions) to those previously observed on Ni(111) (ref.1) and Pt(111) (ref.2) surfaces at low temperatures. Like these earlier spectra,the EELS results for C2H4/C2D4 adsorbed on clean Ni(110) can be well interpreted in terms of a MCH2CH2M/MCD2CD2M species (M = metal) with the CC bond parallel to the surface.After adsorption on the carbided Ni(110) surfaces at 125 K,the main loss features occur at 3065 (m), 2992 (m), 1524 (ms), 1250 (s), 895 (s), and 314 cm?1 (vs) (C2H4 adsorption) and 2339 (m), 2242 (m), 1395 (s), 968 (s), 661 (m) and 314 cm?1 (vs). With the exceptions of reduced intensities of the bands at 895 cm?1 (C2H4) and 661 cm?1 (C2D4) this pattern of losses - particularly the 1550-1200 cm?1 features which can be assigned to coupled νCC and δCH2/δCD2 modes - is well related to similar results on Cu(100) (ref.3) and Pd(111) (ref.4) which have been interpreted convincingly in terms of the presence of π-bonded species, (C2H4)M or (C2D4)M on the surface. This structural assignment is supported by comparison with the vibrational spectra of Zeise's salt, K[PtCl3(C2H4)].H2O (refs.5&6).Spectral changes occur on warming C2H4 on the clean Ni(110) surface with a growth of a feature near 895 cm?1 at 200 K. At 300 K a rather poorly-defined spectrum occurs, which differs substantially from those found on (111) surfaces of Pt (ref.2), Rh (ref.7) or Pd (ref.8) at room temperature. These latter have been attributed to the ethylidyne, CH3.CM3, surface species (ref.9). For adsorption on Ni(110) there is clearly a mixture of species at room temperature.The analysis of the vibrational spectra of selected metal-cluster compounds of known structure with selected hydrocarbon ligands has helped substantially to assign the spectra of surface species in terms of bonding structures of the adsorbed species, as in the cases of the identification of (C2H4)M π-adsorbed (refs.5&6) and the ethylidyne CH3.CM3 species (ref.9). We have recently analysed the infrared and Raman spectra of the cluster compound (C2H2)Os3(CO)10 and its deuterium-containing analogue. The infrared frequency and intensity pattern for the A′ modes (CS symmetry) of the two isotopomers bears a remarkable resemblance to EELS spectra previously obtained at low temperature for C2H2/C2D2 adsorbed on Pt(111) (ref.2) and (after taking into account systematic frequency shifts) for Pd(111) (ref.4). There is good evidence for believing that the structure of the hydrocarbon ligand interacting with the osmium complex takes the form
where the arrow denotes a π-bond to the third metal atom. This strongly confirms the structure for the low-temperature acetylene species on Pt(111) as proposed by Ibach and Lehwald (ref.2).Finally the room-temperature spectra for ethylene adsorbed on finely-divided silica-supported Pt and Pd catalysts have previously been interpreted in terms of the presence of MCH2CH2M (ref.10) and π-bonded (C2H4)M species (ref.11). However comparisons with the more recent EELS spectra from ethylene on Pt(111) at room temperature (ref.2) now leads to a reassignment of the 2880 cm?1 band, on Pt, previously assigned to MCH2CH2M, together with a new, related,band at 1340 cm?1 (ref.12), to the ethylidyne species CH3CPt3 found on the single crystal surface.More detailed analyses of the spectra reported here will be published later. Acknowledgement is given to substantial assistance for this programme of research from the Science and Engineering Research Council.  相似文献   

17.
The adsorption of methanol on clean and oxygen dosed Cu(110) surfaces has been studied using temperature programmed reaction spectroscopy (TPRS), ultra-violet photoelectron spectroscopy (UPS) and X-ray photoelectron spectroscopy (XPS). Methanol was adsorbed on the clean surface at 140 K in monolayer quantities and subsequently desorbed over a broad range of temperature from 140 to 400 K. The UPS He (II) spectra showed the 5 highest lying emissions seen in the gas phase spectrum of methanol with a chemisorption bonding shift of the two highest lying orbitais due to bonding to the surface via the oxygen atom with which these orbitals are primarily associated. A species of quite a different nature was produced by heating this layer to 270 K. Most noticeably the UPS spectrum showed only 3 emissions and the maximum coverage of this state was approximately 12 monolayer. The data are indicative of the formation of a methoxy species, thus showing that methanol is dissociated on the clean Cu(110) surface at 270 K. The same dissociated species was observed on the oxygen dosed surface, the main difference in this ease being the production of large amounts of H2CO observed in TPRS at 370 K.  相似文献   

18.
Electron energy loss spectroscopy has demonstrated the existence of both a monodentate and a symmetric bidentate bridging formate as stable intermediates in the decomposition of formic acid on the Ru(001) surface. The monodentate formate converts upon heating to the bidentate formate which decomposes via two pathways: CH bond cleavage to yield CO2 and adsorbed hydrogen; and CO bond cleavage to yield adsorbed hydrogen, oxygen and CO. Thermal desorption spectra demonstrate the evolution of H2,H2O, CO and CO2 as gaseous products of the decomposition reaction. The observation of this product distribution from Ru(100), Ni(100) and Ni(110) had prompted the proposal of a formic anhydride intermediate, the existence of which is rendered questionable by the spectroscopic results reported here.  相似文献   

19.
The adsorption of HNO3/H2O mixtures on Ag(110) was investigated to learn more about the chemistry of the metal/electrolyte interface. The experiments were performed in ultrahigh vacuum (UHV) using thermal desorption spectroscopy (TDS), low energy electron diffraction (LEED), and electron stimulated desorption ion angular distribution (ESDIAD) over temperatures of 80–650 K and coverages of 0–10 monolayers (ML). As this is the first known study of HNO3 in UHV, the mass spectrometer cracking pattern for HNO3 is here reported. HNO3 adsorbs irreversibly on the clean surface at 80 K and loses its acidic proton to form an adsorbed surface nitrate (NO3) below 150 K. The saturation amount of adsorbed NO3 is 0.4 ± 0.1 ML for which adsorption occurs in either a normal or split c(2 × 2) structure. N03 is stable on the surface up to 450 K beyond which it decomposes directly to gaseous NO2 and NO and adsorbed atomic oxygen. NO3 decomposition is first order with an activation energy Ea = 151±4 kJ mol−1 and a pre-exponential factor of A = 1015.4±0.4s−1. NO3 stabilizes adsorbed H2O by about 8 kJ mol−1 and is hydrated by as many as three H2O molecules. Multilayers of HNO3/H2O desorb at 150–220 K and show evidence of extensive hydrogen bonding and hydration interactions. No evidence for HNO3-induced corrosion or other surface damage was detected in any of these experiments.  相似文献   

20.
Using molecular-beam relaxation techniques and isotopic exchange experiments, the water-formation reaction on Pd(111) has been shown to proceed via a Langmuir-Hinshelwood mechanism. The reaction product H2O is emitted from the surface with a cosine distribution. The rate-determining step is the formation of OHad in the reaction Oad + Had → OHad. The activation energy for this step is 7 kcal/mole with a pre-exponential factor, v, of 4 × 10?8 cm2 atom?1 sec?1. This value for v lies well below that observed for simple second-order desorption of dissociatively adsorbed diatomic gases, but is roughly of the order of that obtained for the oxidation of CO on Pd(111). The formation of H2O proceeds differently under conditions of excess O2 or H2. In an excess of H2, the kinetics is dominated by the transport of atomic hydrogen between the bulk and the surface as was found for the H?D exchange reaction on Pd(111). In an excess of O2, diffusion of hydrogen into the bulk is blocked by adsorbed oxygen and the hydrogen reservoir available for reaction at the surface is decreased by several orders of magnitude. This results in a drastic reduction of the reaction rate which can be reversed by increasing the partial pressure of H2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号