首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 500 毫秒
1.
表面增强拉曼散射(SERS)光谱技术是一种高灵敏度的检测技术,已在社会发展的多个领域显示出潜在的应用前景。SERS活性基底的大面积、低成本、可控制备是表面增强拉曼散射光谱学研究领域的热点之一。利用溶液法将直径小于5 nm的金纳米团簇旋涂成膜,调控退火温度和时间,将金纳米团簇融合组装成随机分布的金纳米岛。由于融合组装过程在150~210 ℃范围缓慢,控制条件可实现具有高密度增强“热点”的SERS基底,方法简单、成本低廉、面积大、均匀性高。我们利用该方法可重复性获得了性能优良的SERS基底。该基底对表面吸附的单分子层,具有强烈的表面增强拉曼散射光谱响应,150~210 ℃退火样品的宏观增强因子106~107量级。研究表明:相同条件下150~180 ℃退火,金纳米团簇首先融合成直径10~20 nm细小金纳米岛;退火温度190~210 ℃时,形成10~20 nm细小金纳米岛与50~70 nm金纳米岛混合并存的现象。拉曼光谱表征显示:大、小金纳米岛混合并存样品的宏观增强因子高于细小金纳米岛组成的样品。经220 ℃退火后,金纳米团簇完全融合成直径50~100 nm的金纳米岛,岛间距也随之增大,导致纳米岛之间的电磁场强度呈指数衰减,220 ℃退火的样品具有较低的增强因子。本论文揭示了金纳米团簇的缓慢自组装机制,分析了金纳米岛的形貌与表面增强拉曼散射光谱的关系,为该基底的应用研究奠定基础。  相似文献   

2.
《光散射学报》2015,(2):134-138
本文介绍一种集成微通道的表面增强拉曼基底。采用湿法刻蚀方法在硅片上形成微通道,然后电子束蒸发沉积金薄膜,最后在300℃温度下高真空退火30分钟,使微通道内形成均匀且高密度的金纳米颗粒结构。用场发射扫描电子显微镜(SEM)对基底表面进行表征发现:金膜厚度对基底的表面形貌影响很大,5nm厚的金膜在退火后形成了均匀的高密度的纳米颗粒结构,而10nm厚的金膜退火后没有得到高密度纳米颗粒结构。用10-6 M的罗丹明6G作为探测分子进行拉曼实验测试结果同样表明:5nm厚的金膜退火后形成高密度的金纳米颗粒显著地增强了R6G拉曼信号。同时,对比了宽度分别为25、60、110!m三种尺寸的微通道的基底表面形貌和拉曼增强效应,微通道尺寸对表面形貌和拉曼增强效应影响均很小。  相似文献   

3.
王向贤  白雪琳  庞志远  杨华  祁云平  温晓镭 《物理学报》2019,68(3):37301-037301
金属纳米颗粒与金属薄膜的复合结构由于其局域表面等离子体和传播表面等离子体间的强共振耦合作用,可作为表面增强拉曼散射(SERS)基底,显著增强吸附分子的拉曼信号.本文提出了一种聚甲基丙烯酸甲酯(PMMA)间隔的90 nm金纳米立方体与50 nm金膜复合结构的SERS基底,通过有限元方法数值模拟,得到PMMA的最优化厚度为15 nm.实验制备了PMMA间隔层厚度为14 nm的复合结构,利用罗丹明6G (R6G)为拉曼探针分子, 633 nm的氦氖激光器作为激发光源,研究了复合结构和单一金纳米立方体的SERS效应,发现复合结构可以使探针分子产生比单一结构更强的拉曼信号.在此基础上,研究了不同浓度金纳米立方体水溶液条件下复合结构中R6G的拉曼光谱.结果表明,当金纳米立方体水溶液浓度为5.625μg/mL的条件下复合结构中R6G的拉曼信号最强,且可测量R6G的最低浓度达10~(–11) mol/L.  相似文献   

4.
金、银、铜等贵金属的纳米结构都具有表面等离激元共振效应,在表面增强拉曼散射(SERS)和光催化领域具有重要的应用价值。合金纳米颗粒有望兼具多种金属的优点,赋予金属纳米颗粒更多优良品质。本论文中,我们通过改进“Brust”法,成功合成了直径1~5 nm的Au_1Ag_1和Au_1Cu_1合金纳米颗粒,所制备的合金纳米颗粒在空气中具有良好的稳定性,并在有机溶剂中具有良好的溶解性。利用溶液法组装的Au_1Ag_1和Au_1Cu_1合金SERS基底,分别对532 nm和785 nm的激发光表现出良好SERS性能。相同条件下,Au_1Ag_1基底比Au基底对R6G探针分子的拉曼信号强度提高了2~4倍,表现出良好的SERS活性。Au_1Cu_1合金基底则比Au_1Ag_1合金和Au基底表现出更强的光催化活性,在光催化领域表现出潜在的应用价值。  相似文献   

5.
表面增强拉曼散射(SERS)很大程度的弥补了拉曼散射强度弱的缺点,迅速成为科研工作者们的研究热点,在食品安全、环境污染、毒品以及爆炸物检测等领域应用广泛。纳米技术的发展使得目前对于SERS的研究主要集中于金属纳米颗粒基底的制备,金属纳米粒子的种类、尺寸及形貌对SERS增强和吸收峰峰位均有影响,要获得好的增强效果,需要对金属纳米结构进行工艺优化。特别是,需要结合金属纳米粒子的结构和激励光波长,以期获得更好的增强效果。为了研究SERS增强和吸收峰之间的关系,开展了具有双共振吸收峰的金属纳米粒子的研究。首先利用FDTD Solutions仿真建模,主要针对金纳米颗粒直径、金纳米棒长径比及分布状态对共振吸收峰进行仿真,得到金纳米球理论直径在50 nm左右,金纳米棒理论长径比在3.5~4.5左右时,吸收峰分别分布在532及785 nm附近,符合多波段激励光拉曼增强条件;对于激励光偏振方向,其沿金纳米棒长轴方向偏振时吸收峰位于785 nm附近,沿金纳米球短轴方向偏振时吸收峰位于532 nm附近。然后采用种子生长法,制备了可用于多种波长激励光的双吸收峰表面增强拉曼散射基底。通过改变硝酸银用量(5,10,20,30和40 μL)、盐酸用量(0.1和0.2 mL)以及其生长时间(15,17,21和23 h)等多种工艺参数来控制金纳米棒含量,得到了同时含有金纳米球及金纳米棒的双吸收共振峰金纳米粒子。最后用该样品作为基底,罗丹明6G(R6G)作为探针分子,分别测试其在532,633和785 nm激励光入射时的SERS表征,对分析物R6G最低检测浓度均达到了10-7 mol·L-1,增强因子达到了~105,满足了多波段SERS检测的需要。  相似文献   

6.
表面增强拉曼散射(surface-enhanced Raman scattering,简称为SERS)能够提供有机分子的指纹特征信息,且具有灵敏度高和响应时间快等优点,是一项具有发展前景的分析技术。纳米结构SERS基底是获得SERS信号的关键。本文利用简便的电沉积方法在硅片上制备大面积的金微/纳颗粒阵列。金纳米颗粒之间存在大量狭小的纳米间隙,在光激发下产生大量的SERS"热点",从而具有很高的SERS灵敏度。而且,这种金微/纳结构具有高结构稳定性和化学稳定性。该结构对浓度低至10-12 M的罗丹明6G(R6G)具有很高的SERS灵敏性,且具有很好的SERS信号均匀性。利用这种微/纳结构阵列SERS基底,实现对水中低浓度农药甲基对硫磷的成功检测。这表明我们制备的金微/纳颗粒阵列在检测环境中的毒性有机物污染物方面具有潜在的应用前景。  相似文献   

7.
调节纳米颗粒相邻间距和排列方式,可以得到宏观有序纳米结构,其具有新的光、电性质,可作为研究亲脂性分子的表面增强拉曼光谱(SERS)基底。首先制备了直径为16 nm的金纳米粒子,通过界面自组装方法制得金纳米粒子膜,并利用扫描电镜、紫外-可见吸收光谱仪等对其进行了表征,结果表明其有两种膜结构,一种是均匀分布的单层膜,另一种是多层膜结构,它们的吸收峰在590 nm处。将其作为SERS基底,研究了相同条件下苏丹红Ⅰ分子在不同膜结构的谱学变化,发现单层和多层膜上苏丹红Ⅰ的SERS信号有明显差异。最后,初步探究了苏丹红Ⅰ分子随浸泡时间的吸附动力学。  相似文献   

8.
表面增强拉曼光谱(surface-enhanced Raman scattering,SERS)能够有效解决常规拉曼中信号极弱问题,在低浓度分析物的痕量检测甚至单分子的检测中具有重要的应用前景,是化学、生物、环境等领域重要的分析手段。在SERS中,高性能SERS基底的实现是关键。本文以微球自组装技术为基础,制备了一种大面积、廉价、高效的SERS基底并对其进行了形貌表征和拉曼增强光谱研究。通过开展R6G分子的SERS研究发现,此种SERS基底对R6G拉曼散射信号的增强倍数是一般粗糙基底的五倍以上。结合数值模拟分析和系统的实验研究,得到了微球直径、纳米颗粒的高度等参数对基底表面附近局域热点和SERS增强倍数的影响规律,给出了最优化的SERS基底参数。本文工作可为SERS研究提供高性能的SERS基底。  相似文献   

9.
采用多巴胺化学还原法制备了分散性良好的纳米金溶胶,并检测了其作为表面增强拉曼散射(Surface Enhanced Raman Scattering,SERS)基底的性质。粒度和透射电子显微镜测试结果表明金溶胶为平均粒径30nm左右的球形颗粒,并且紫外-可见特征吸收峰出现在520nm,为典型的金纳米颗粒特征吸收峰。以罗丹明6G(R6G)为探针分子证明了金溶胶良好的SERS增强效果,用金溶胶对除草剂敌草快(DQ)进行检测,最低检测限可达1×10-7 mol/L。结果表明所制备的金溶胶具有良好的表面增强拉曼散射活性。  相似文献   

10.
在氨基硅烷化的单晶硅片表面通过静电自组装技术组装上金和金核铂壳两种纳米粒子,通过改变基底浸泡在溶胶中的时间控制基底上纳米粒子的密度。用扫描电子显微镜(SEM)对基底表面上的形貌进行表征,结果表明纳米粒子呈亚单层二维阵列分布。以吡啶(Py)为探针分子,用波长为632.8 nm的激发光作为激发光源,研究纯金和金铂复合基底上的表面增强拉曼光谱(SERS)行为。数据显示在金纳米粒子之间引入金核铂壳纳米粒子后,Py的两个特征峰的频率没有明显变化,但谱峰的强度却变弱了,其SERS信号衰减最大可至原来的24%。这是由于引入的铂的d态电子使金的等离子体激发猝灭,从而破坏了电磁场增强,使金的SERS信号衰减。  相似文献   

11.
We presented a controlled particles‐in‐cavity (PIC) pattern for surface‐enhanced Raman scattering (SERS) detection. The periodic gold cavity array was fabricated by electrodeposition using highly ordered polystyrene spheres as a template. The as‐prepared gold cavities can be used as a SERS active substrate with significant spectral enhancement and reproducibility, which was evaluated by SERS signals using 4‐mercaptobenzoic acid (4‐MBA) as probe molecules. The surface of these gold cavities was further functionalized with cetyltrimethylammonium bromide molecules, which may immobilize the 4‐MBA‐modified silver nanoparticles in the gold cavity to form a PIC structure via the electrostatic interaction. We have demonstrated that there exists a pH window for the immobilization of the nanoparticles inside cavities. Therefore, the silver nanoparticles can be selectively immobilized into the functionalized gold cavities under the optimized pH value of the media. Further enhancement of the Raman scattering of the labeled molecules can be achieved due to the interconnection between the silver nanoparticles and gold cavity. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
In this work, we report the fabrication and characterization of size controllable gold nanoparticles (NPs) aggregates for their application in surface enhanced Raman scattering (SERS). Aggregates were prepared using two methodologies: (i) by using silica particles arrays as a template to agglomerate gold NPs between the inter-particle interstices, and (ii) by functionalizing silica particles to be used as support to graft gold nanoparticles and thus to form decorated silica particle arrays. These substrates were used in the detection of Rhodamine 6G producing an enhancement factor (EF) from 104 to 106 that is associated to the increment of hot spot (HS) sites, and the fact that plasmon resonance from aggregates and absorption wavelength of test molecules are closely in resonance with excitation wavelength. The EF was also reduced when the plasmon resonance was red-shifted as a result of the increment of aggregate size. In spite of this, the EF is high enough to make these SERS substrates excellent candidates for sensing applications.  相似文献   

13.
表面增强拉曼(SERS)作为一种分析手段,具有高灵敏度、高选择性、高重复性、非破坏性等优点,在过去的几十年中,被广泛应用在成分检测、环境科学、生物医药及传感器等领域。其中以金、银等贵金属纳米颗粒薄膜在表面增强拉曼(SERS)活性基底方面得到了更为广泛的应用。SERS技术一个关键的因素是如何制设计并备具有大面积、高增强能力及高重复性、可循环使用的SERS基底。通常,贵金属纳米颗粒规则阵列结构的单元颗粒电磁增强特性及其颗粒间的电磁耦合增强特性的综合作用可大力提升SERS基底的探测性能。然而,利用传统微纳米加工方法如光刻、电子束光刻等方法制备得到的贵金属纳米阵列结构的表面粗糙度不够理想。结合光刻与化学置换方法制备金纳米颗粒四方点阵列孔洞结构,并研究其作为SERS基底的电磁增强特性。具体研究利用光刻法在硅衬底上制备了规则排列的四方点阵列孔洞结构,用磁控溅射在其表面镀上金属铁膜;接着在衬底上旋涂浓度为1.893 8 mol·L-1的氯金酸液膜,在孔洞内铁和氯金酸发生置换反应,进而孔洞生成金纳米颗粒,最终得到金纳米颗粒四方点阵SERS活性基底。采用罗丹明6G(R6G)分子作为探测分子测试不同金纳米颗粒阵列结构基底的SERS谱。实验结果表明,随着化学置换反应时间的延长,金纳米颗粒排列更加紧凑有序,SERS谱增强性能更好。  相似文献   

14.
表面增强拉曼光谱(SERS)是目前最灵敏的分析技术之一,广泛应用于生命科学、材料科学、环境科学及分析化学等领域。SERS基底的特性决定了该技术的实际应用范围,是推动该技术发展的关键,高活性SERS基底的制备已经逐渐成为SERS研究领域的热点。为了获得最佳的拉曼信号,对具有特殊特性的SERS活性基底的需求一直很大。柔性SERS基底因具有良好的柔韧性,3D支架结构和表面可控的孔径大小等独特优势,在检测化合物和细菌等方面有很好的应用价值。Nylon(尼龙)柔性膜表面具有分级及多孔交错排列3D结构的特点,将固相萃取装置与特殊材料Nylon柔性膜相结合,通过改变金纳米颗粒的附着量以及金纳米颗粒与膜结合次数,制备了高SERS活性的金纳米-Nylon(Au-Nylon)柔性膜基底。研究表明,金纳米颗粒能很好地附着在Nylon纤维上,纳米颗粒与Nylon柔性膜表面等离子共振耦合作用,形成金纳米颗粒与Nylon纤维的复合体,Au-Nylon柔性膜基底的等离子共振吸收峰发生蓝移。首次处理后的Nylon纤维与其所附着的金纳米颗粒形成新的活性截留层,有助于使再次处理时金颗粒更好地附着在柔性膜表面,产生SERS“热点”效应,提高其SERS性能。利用结晶紫(CV)作为SERS探针分子,对Au-Nylon柔性膜基底SERS性能进行分析,发现CV探针分子在Au-Nylon柔性膜基底上的SERS强度随金纳米颗粒的附着量以及金纳米颗粒与膜结合次数而变化。对于面积为1 cm2的Au-Nylon柔性膜基底,当单次过滤金溶胶1 mL,与膜结合2次,总结合量2 mL时,CV探针分子的SERS信号最强,SERS活性最强。采用Au-Nylon柔性膜基底对浓度为2.5×10-5,1×10-5,1×10-6,5×10-7及1×10-7 mol·L-1的CV溶液进行的SERS检测,发现Au-Nylon柔性膜基底对CV探针分子检测极限达1×10-6 mol·L-1,增强因子达到1.0×104。此外,Au-Nylon柔性膜基底均匀性较好,相对平均偏差为11.8%。Au-Nylon柔性膜基底在微生物检测中,仍具有良好SERS活性,对金黄色葡萄球菌的SERS增强效果优于金溶胶。由此可见,研究中制备的Au-Nylon柔性具有良好的均一性,并具有较好的SERS活性,该方法简单且易批量制备,无论在化合物检测还是微生物检测中都具有良好的实际应用价值。  相似文献   

15.
A large-scale Si nanowire array (SiNWA) is fabricated with gold (Au) nanoparticles by simple metal-assisted chemical etching and metal reduction processes. The three-dimensional nanostructured Au/SiNWA is evaluated as an active substrate for surface-enhanced Raman scattering (SERS). The results show that the detection limit for rhodamine 6G is as low as 10-7 M, and the Raman enhancement factor is as large as 105 with a relative standard deviation of less than 25%. After the calibration of the Raman peak intensifies of rhodamine 6G and thiram, organic molecules could be quantitatively detected. These results indicate that Au/SiNWA is a promising SERS-active substrate for the detection of biomolecules present in low concentrations. Our findings are an important advance in SERS substrates to allow fast and quantitative detection of trace organic contaminants.  相似文献   

16.
以氯金酸为原料,抗坏血酸为还原剂,柠檬酸钠为保护剂,用化学还原(种子生长)法制备了不同粒径、超均匀的球形金纳米粒子溶胶,并通过紫外可见吸收光谱(UV-Vis)和扫描电子显微镜(SEM)进行表征。结果表明,随着金纳米粒子粒径的增大,其UV-Vis光谱中的吸收峰发生红移并出现四极峰。为进一步研究金纳米粒子表面增强拉曼散射(SERS)效应的作用机理并优化其灵敏度,我们以罗丹明6G(R6G)为探针分子,对不同粒径的金纳米粒子进行SERS表征,发现R6G的SERS信号随着金纳米粒子的增大先增强后减弱。当金纳米粒子的平均粒径达到120 nm时,产生最强SERS信号增强,增强因子约为1.1×107。三维时域有限差分法(3D-FDTD)理论模拟纳米粒子阵列电磁场分布结果与实验数据的趋势一致。  相似文献   

17.
庄严  周全法 《光谱实验室》2010,27(5):1947-1950
在金,银纳米粒子表面修饰对巯基苯胺(PATP)分子,对其进行紫外及拉曼光谱性质表征。紫外吸收光谱显示修饰了单分子层的纳米粒子表面等离子体共振发生较大的红移,银粒子位移程度大于金粒子的。其拉曼散射增强效应研究表明,对巯基苯胺b2振动模式的极大增强是由电磁增强和化学增强效应共同决定的。金、银粒子上对巯基苯胺单分子层拉曼散射增强效应的差异主要来自金属与对巯基苯胺之间电荷转移能力的不同。  相似文献   

18.
范春珍  朱双美  辛昊毅 《中国物理 B》2017,26(2):23301-023301
We experimentally fabricate a non-spherical Ag and Co surface-enhanced Raman scattering(SERS) substrate, which not only retains the metallic plasmon resonant effect, but also possesses the magnetic field controllable characteristics.Raman detections are carried out with the test crystal violet(CV) and rhodamine 6G(R6G) molecules with the initiation of different magnitudes of external magnetic field. Experimental results indicate that our prepared substrate shows a higher SERS activity and magnetic controllability, where non-spherical Ag nanoparticles are driven to aggregate effectively by the magnetized Co and plenty of hot-spots are built around the metallic Ag nanoparticles, thereby leading to the enhancement of local electromagnetic field. Moreover, when the external magnetic field is increased, our prepared substrate demonstrates excellent SERS enhancement. With the 2500 Gs and 3500 Gs(1 Gs = 10~(-4)T) magnetic fields, SERS signal can also be obtained with the detection limit lowering down to 10~(-9)M. These results indicate that our proposed magnetic field controlled substrate enables us to freely achieve the enhanced and controllable SERS effect, which can be widely used in the optical sensing, single molecule detection and bio-medical applications.  相似文献   

19.
Surface‐enhanced Raman scattering (SERS) in practical application and theoretical research mostly depends on the performance of the SERS substrate. In this study, a new SERS substrate which is based on inverted self‐assembly of Ag nanoparticles (AgNPs) on glycidyl methacrylate‐ethylene dimethacrylate (GMA‐EDMA) porous material is developed. The characterization results show the GMA‐EDMA material with intertwined pores may contribute to the distribution of the AgNPs to fabricate an ideal substrate for SERS detection. In view of the characteristics of porous material, an inverted assembly method is proposed and used in operation to avoid the adverse gravity effect which may make the AgNPs plug up the pore channel and distribute on the surface unevenly. By the inverted self‐assembly method, the AgNPs could uniformly distribute on the surface of the material stably. The prepared substrate presents ultrasensitivity and good reproducibility for SERS detection. The enhancement factor of rhodamine 6G (R6G) detection is approximately 1014 and the relative standard deviation of each characteristic peak is about 15% when the substrate is used. The substrate also shows a good performance in detecting paraquat and thymine. The ultrasensitive SERS substrate can be readily integrated into pesticide detection systems and biological sample analysis. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号