首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
One-dimensional metals, such as quantum wires or carbon nanotubes, can carry charge in arbitrary units, smaller or larger than a single electron charge. However, according to Luttinger theory, which describes the low-energy excitations of such systems, when a single electron is injected by tunneling into the middle of such a wire, it will tend to break up into separate charge pulses, moving in opposite directions, which carry definite fractions f and (1-f) of the electron charge, determined by a parameter g that measures the strength of charge interactions in the wire. (The injected electron will also produce a spin excitation, which will travel at a different velocity than the charge excitations.) Observing charge fractionalization physics in an experiment is a challenge in those (nonchiral) low-dimensional systems which are adiabatically coupled to Fermi liquid leads. We theoretically discuss a first important step towards the observation of charge fractionalization in quantum wires based on momentum-resolved tunneling and multi-terminal geometries, and explain the recent experimental results of Steinberg et al. [H. Steinberg, G. Barak, A. Yacoby, L.N. Pfeiffer, K.W. West, B.I. Halperin, K. Le Hur, Nature Physics 4 (2008) 116].  相似文献   

2.
3.
We study a quantum quench in a 1D system possessing Luttinger liquid (LL) and Mott insulating ground states before and after the quench, respectively. We show that the quench induces power law amplification in time of any particle density inhomogeneity in the initial LL ground state. The scaling exponent is set by the fractionalization of the LL quasiparticle number relative to the insulator. As an illustration, we consider the traveling density waves launched from an initial localized density bump. While these waves exhibit a particular rigid shape, their amplitudes grow without bound.  相似文献   

4.
The conductance of a weakly interacting electron gas in the presence of a single scatterer is found at arbitrary strength of the scattering potential. At weak interaction one can use a simple renormalization group approach instead of the standard bosonization technique. For a model with spinless electrons this approach allows us to show explicitly the crossover from the Fermi-gas to the low-temperature Luttinger liquid behavior. Deviations from the Luttinger liquid theory are studied for a realistic model of spin- electrons.  相似文献   

5.
A single pair of helical edge states as realized at the boundary of a quantum spin Hall insulator is known to be robust against elastic single particle backscattering as long as time reversal symmetry is preserved. However, there is no symmetry preventing inelastic backscattering as brought about by phonons in the presence of Rashba spin orbit coupling. In this Letter, we show that the quantized conductivity of a single channel of helical Dirac electrons is protected even against this inelastic mechanism to leading order. We further demonstrate that this result remains valid when Coulomb interaction is included in the framework of a helical Tomonaga Luttinger liquid.  相似文献   

6.
《Physics letters. A》2004,328(6):473-480
We study the stability of a Luttinger liquid in a metallic single-walled nanotube against generic backscattering and Umklapp perturbations. Analizing the renormalization group equations we identify nontrivial particular solutions that lay in the same universality class of the Luttinger liquid. We describe in detail the mechanism of instability generation in that electron liquid and discuss under which conditions it governs the physical properties in the presence of low frequency or temperature cutoffs.  相似文献   

7.
Luttinger liquid theory describes one-dimensional electron systems in terms of noninteracting bosonic excitations. In this approximation thermal excitations are decoupled from the current flowing through a quantum wire, and the conductance is quantized. We show that relaxation processes not captured by the Luttinger liquid theory lead to equilibration of the excitations with the current and give rise to a temperature-dependent correction to the conductance. In long wires, the magnitude of the correction is expressed in terms of the velocities of bosonic excitations. In shorter wires it is controlled by the relaxation rate.  相似文献   

8.
Motivated by current interest in strongly correlated quasi-one-dimensional (1D) Luttinger liquids subject to axial confinement, we present a novel density-functional study of few-electron systems confined by power-low external potentials inside a short portion of a thin quantum wire. The theory employs the 1D homogeneous Coulomb liquid as the reference system for a Kohn-Sham treatment and transfers the Luttinger ground-state correlations to the inhomogeneous electron system by means of a suitable local-density approximation (LDA) to the exchange-correlation energy functional. We show that such 1D-adapted LDA is appropriate for fluid-like states at weak coupling, but fails to account for the transition to a “Wigner molecules” regime of electron localization as observed in thin quantum wires at very strong coupling. A detailed analyzes is given for the two-electron problem under axial harmonic confinement.  相似文献   

9.
Low-energy physics of one-dimensional electron systems can be generally described in terms of the Tomonaga–Luttinger liquid, instead of the Fermi liquid. We give a nontechnical review for nonspecialists on this intriguing subject. As an example of physical consequences, we discuss junction of two and three Tomonaga–Luttinger liquids.  相似文献   

10.
We consider dynamical correlation functions of short range interacting electrons in one dimension at finite temperature. Below a critical value of the chemical potential there is no Fermi surface anymore, and the system can no longer be described as a Luttinger liquid. Its low temperature thermodynamics is that of an ideal gas. We identify the impenetrable electron gas model as a universal model for the gas phase and present exact and explicit expressions for the asymptotics of correlation functions at small temperatures, in the presence of a magnetic field.  相似文献   

11.
We show that the combination of spin-orbit coupling with a Zeeman field or strong interactions may lead to the formation of a helical electron liquid in single-channel quantum wires, with spin and velocity perfectly correlated. We argue that zero-energy Majorana bound states are formed in various situations when such wires are situated in proximity to a conventional s-wave superconductor. This occurs when the external magnetic field, the superconducting gap, or, most simply, the chemical potential vary along the wire. These Majorana states do not require the presence of a vortex in the system. Experimental consequences of the helical liquid and the Majorana states are also discussed.  相似文献   

12.
In a Luttinger liquid phase of one-dimensional molecular matter the strength of zero-point motion can be characterized by dimensionless De Boer's number quantifying the interplay of quantum fluctuations and two-body interactions. Selecting the latter in the Morse form we show that dissociation of the Luttinger liquid is a process initiated at the system edge. The latter becomes unstable against quantum fluctuations at a value of De Boer's number which is smaller than that of the bulk instability which parallels the classical phenomenon of surface melting.  相似文献   

13.
We consider the Kane-Mele model supplemented by a Hubbard U term. The phase diagram is mapped out using projective auxiliary field quantum Monte Carlo simulations. The quantum spin liquid of the Hubbard model is robust against weak spin-orbit interaction, and is not adiabatically connected to the spin-Hall insulating state. Beyond a critical value of U>U(c) both states are unstable toward magnetic ordering. In the quantum spin-Hall state we study the spin, charge, and single-particle dynamics of the helical Luttinger liquid by retaining the Hubbard interaction only on a ribbon edge. The Hubbard interaction greatly suppresses charge currents along the edge and promotes edge magnetism but leaves the single-particle signatures of the helical liquid intact.  相似文献   

14.
The dc Josephson effect is investigated in a single-walled metallic carbon nanotube connected to two superconducting leads. In particular, by using the Luttinger liquid theory, we analyze the effects of the electron-electron interaction on the supercurrent. We find that in the long junction limit the strong electronic correlations of the nanotube, together with its peculiar band structure, induce oscillations in the critical current as a function of the junction length and/or the nanotube electron filling. These oscillations represent a signature of the Luttinger liquid physics of the nanotube, for they are absent if the interaction is vanishing. We show that this effect can be exploited to reverse the sign of the supercurrent, realizing a tunable π-junction.  相似文献   

15.
We study the low-temperature properties of a 4He fluid confined in nanopores, using large-scale quantum Monte Carlo simulations with realistic He-He and He-pore interactions. In the narrow-pore limit, the system can be described by the quantum hydrodynamic theory known as Luttinger liquid theory with a large Luttinger parameter, corresponding to the dominance of solid tendencies and strong susceptibility to pinning by a periodic or random potential from the pore walls. On the other hand, for wider pores, the central region appears to behave like a Luttinger liquid with a smaller Luttinger parameter, and may be protected from pinning by the wall potential, offering the possibility of experimental detection of a Luttinger liquid.  相似文献   

16.
We propose a scheme to observe strongly correlated fermionic phenomena with bosonic atoms in optical lattices. For different values of the sign and strength of the scattering lengths, it is possible to reach either a "superconducting" regime, where the system exhibits atomic pairing, or a Luttinger liquid behavior. We identify the range of parameters where these phenomena appear, illustrate our predictions with numerical calculations, and show how to detect the presence of pairing.  相似文献   

17.
By shifting the reference system for the local-density approximation (LDA) from the electron gas to other model systems, one obtains a new class of density functionals, which by design account for the correlations present in the chosen reference system. This strategy is illustrated by constructing an explicit LDA for the one-dimensional Hubbard model. While the traditional ab initio LDA is based on a Fermi liquid (the three-dimensional interacting electron gas), this one is based on a Luttinger liquid. First applications to inhomogeneous Hubbard models, including one containing a localized impurity, are reported.  相似文献   

18.
We suggest an experiment to study Luttinger liquid behavior in a one-dimensional nanostructure, avoiding the usual complications associated with transport measurements. The proposed setup consists of a quantum box, biased by a gate voltage, and side coupled to a quantum wire by a point contact. Close to the degeneracy points of the Coulomb blockaded box, and in the presence of a magnetic field sufficiently strong to spin polarize the electrons, the setup can be described as a Luttinger liquid interacting with an effective Kondo impurity. Using exact nonperturbative techniques, we predict that the differential capacitance of the box will exhibit distinctive Luttinger liquid scaling with temperature and gate voltage.  相似文献   

19.
Girish S Setlur 《Pramana》2004,62(1):115-134
It is shown how Luttinger liquids may be studied using sea-bosons. The main advantage of the sea-boson method is its ability to provide information about short-wavelength physics in addition to the asymptotics and is naturally generalizable to more than one dimension. In this article, we solve the Luttinger model and the Calogero-Sutherland model, the latter in the weak-coupling limit. The anomalous exponent we obtain in the former case is identical to the one obtained by Mattis and Lieb. We also apply this method to solve the two-dimensional analog of the Luttinger model and show that the system is a Landau-Fermi liquid. Then we solve the model of spinless fermions in one dimension with long-range (gauge) interactions and map the Wigner crystal phase of the system.  相似文献   

20.
A system of three coupled quantum dots in a triangular geometry (TQD) with electron–electron interaction and symmetrically coupled to two leads is analyzed with respect to the electron transport by means of the numerical renormalization group. Varying gate potentials this system exhibits extremely rich range of regimes with different many-electron states with various local spin orderings. It is demonstrated how the Luttinger phase changes in a controlled manner which then via the Friedel sum rule formula exactly reproduces the conductance through the TQD system. The analysis of the uncoupled TQD molecule from the leads gives a reliable qualitative understanding of various relevant regimes and an insight into the phase diagram with the regular Fermi liquid and singular-Fermi liquid phases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号