首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this paper we examine the closure problem associated with the volume averaged form of the Stokes equations presented in Part II. For both ordered and disordered porous media, we make use of a spatially periodic model of a porous medium. Under these circumstances the closure problem, in terms of theclosure variables, is independent of the weighting functions used in the spatial smoothing process. Comparison between theory and experiment suggests that the geometrical characteristics of the unit cell dominate the calculated value of the Darcy's law permeability tensor, whereas the periodic conditions required for thelocal form of the closure problem play only a minor role.Roman Letters A interfacial area of the- interface contained within the macroscopic region, m2 - A e area of entrances and exits for the-phase contained within the macroscopic system, m2 - A interfacial area of the- interface associated with the local closure problem, m2 - A p surface area of a particle, m2 - b vector used to represent the pressure deviation, m–1 - B 0 B+I, a second order tensor that maps v m ontov - B second-order tensor used to represent the velocity deviation - d p 6V p/Ap, effective particle diameter, m - d a vector related to the pressure, m - D a second-order tensor related to the velocity, m2 - g gravity vector, m/s2 - I unit tensor - K traditional Darcy's law permeability tensor calculated on the basis of a spatially periodic model, m2 - K m permeability tensor for the weighted average form of Darcy's law, m2 - L general characteristic length for volume averaged quantities, m - L p characteristic length for the volume averaged pressure, m - L characteristic length for the porosity, m - L v characteristic length for the volume averaged velocity, m - characteristic length (pore scale) for the-phase - i i=1, 2, 3 lattice vectors, m - weighting function - m(-y) , convolution product weighting function - m v special convolution product weighting function associated with the traditional averaging volume - m g general convolution product weighting function - m V unit cell convolution product weighting function - m C special convolution product weighting function for ordered media which produces the cellular average - n unit normal vector pointing from the-phase toward the -phase - p pressure in the-phase, N/m2 - p m superficial weighted average pressure, N/m2 - p m intrinsic weighted average pressure, N/m2 - p traditional intrinsic volume averaged pressure, N/m2 - p p m , spatial deviation pressure, N/m2 - r 0 radius of a spherical averaging volume, m - r m support of the convolution product weighting function - r position vector, m - r position vector locating points in the-phase, m. - V averaging volume, m3 - B volume of the-phase contained in the averaging volume, m3 - V cell volume of a unit cell, m3 - v velocity vector in the-phase, m/s - v m superficial weighted average velocity, m/s - v m intrinsic weighted average velocity, m/s - v traditional superficial volume averaged velocity, m/s - v v m , spatial deviation velocity, m/s - x position vector locating the centroid of the averaging volume or the convolution product weighting function, m - y position vector relative to the centroid, m - y position vector locating points in the -phase relative to the centroid, m Greek Letters indicator function for the-phase - Dirac distribution associated with the- interface - V /V, volume average porosity - m m * , weighted average porosity - mass density of the-phase, kg/m3 - viscosity of the-phase, Ns/m2  相似文献   

2.
In this work we consider transport in ordered and disordered porous media using singlephase flow in rigid porous mediaas an example. We defineorder anddisorder in terms of geometrical integrals that arise naturally in the method of volume averaging, and we show that dependent variables for ordered media must generally be defined in terms of thecellular average. The cellular average can be constructed by means of a weighting function, thus transport processes in both ordered and disordered media can be treated with a single theory based on weighted averages. Part I provides some basic ideas associated with ordered and disordered media, weighted averages, and the theory of distributions. In Part II a generalized averaging procedure is presented and in Part III the closure problem is developed and the theory is compared with experiment. Parts IV and V provide some geometrical results for computer generated porous media.Roman Letters A interfacial area of the- interface contained within the macroscopic region, m2 - Ae area of entrances and exits for the-phase contained within the macroscopic system, m2 - g gravity vector, m/s2 - I unit tensor - K traditional Darcy's law permeability tensor, m2 - L general characteristic length for volume averaged quantities, m - characteristic length (pore scale) for the-phase - (y) weighting function - m(–y) (y), convolution product weighting function - v special weighting function associated with the traditional averaging volume - N unit normal vector pointing from the-phase toward the-phase - p pressure in the-phase, N/m2 - p0 reference pressure in the-phase, N/m2 - p traditional intrinsic volume averaged pressure, N/m2 - r0 radius of a spherical averaging volume, m - r position vector, m - r position vector locating points in the-phase, m - averaging volume, m3 - V volume of the-phase contained in the averaging volume, m3 - V cell volume of a unit cell, m3 - v velocity vector in the-phase, m/s - v traditional superficial volume averaged velocity, m/s - x position vector locating the centroid of the averaging volume or the convolution product weighting function, m - y position vector relative to the centroid, m - y position vector locating points in the-phase relative to the centroid, m Greek Letters indicator function for the-phase - Dirac distribution associated with the- interface - V/V, volume average porosity - mass density of the-phase, kg/m3 - viscosity of the-phase, Ns/m2  相似文献   

3.
The documentation and control of flow disturbances downstream of various open inlet contractions was the primary focus with which to evaluate a spatial sampling technique. An X-wire probe was rotated about the center of a cylindrical test section at a radius equal to one-half that of the test section. This provided quasi-instantaneous multi-point measurements of the streamwise and azimuthal components of the velocity to investigate the temporal and spatial characteristics of the flowfield downstream of various contractions. The extent to which a particular contraction is effective in controlling ingested flow disturbances was investigated by artificially introducing disturbances upstream of the contractions. Spatial as well as temporal mappings of various quantities are presented for the streamwise and azimuthal components of the velocity. It was found that the control of upstream disturbances is highly dependent on the inlet contraction; for example, reduction of blade passing frequency noise in the ground testing of jet engines should be achieved with the proper choice of inlet configurations.List of symbols K uv correlation coefficient= - P percentage of time that an azimuthal fluctuating velocity derivative dv/d is found - U streamwise velocity component U=U (, t) - V azimuthal or tangential velocity component due to flow and probe rotation V=V (, t) - mean value of streamwise velocity component - U m resultant velocity from and - mean value of azimuthal velocity component induced by rotation - u fluctuating streamwise component of velocity u=u(, t) - v fluctuating azimuthal component of velocity v = v (, t) - u phase-averaged fluctuating streamwise component of velocity u=u(0) - v phase-averaged fluctuating azimuthal component of velocity v=v() - û average of phase-averaged fluctuating streamwise component of velocity (u()) over cases I-1, II-1 and III-1 û = û() - average of phase-averaged fluctuating azimuthal component of velocity (v()) over cases I-1, II-1 and III-1 - u fluctuating streamwise component of velocity corrected for non-uniformity of probe rotation and/or phase-related vibration u = u(0, t) - v fluctuating azimuthal component of velocity corrected for non-uniformity or probe rotation and/or phase-related vibration v=v (, t) - u 2 rms value of corrected fluctuating streamwise component of velocity - rms value of corrected fluctuating azimuthal component of velocity - phase or azimuthal position of X-probe  相似文献   

4.
Since the temperature is not an additive function, the traditional thermodynamic point of view suggests that the volume integral of the temperature has no precise physical meaning. This observation conflicts with the customary analysis of non-isothermal catalytic reactors, heat pipes, driers, geothermal processes, etc., in which the volume averaged temperature plays a crucial role. In this paper we identify the thermodynamic significance of the volume averaged temperature in terms of a simple two-phase heat transfer process. Given the internal energy as a function of the point temperature and the density
we show that the volume averaged internal energy is represented by e = F(T , )when e is a linear function of T and , or when the traditional length-scale constraints associated with the method of volume averaging are satisfied. When these conditions are not met, higher order terms involving the temperature gradient and the density gradient appear in the representation for e .  相似文献   

5.
In this work, we make use of numerical experiments to explore our original theoretical analysis of two-phase flow in heterogeneous porous media (Quintard and Whitaker, 1988). The calculations were carried out with a two-region model of a stratified system, and the parameters were chosen be consistent with practical problems associated with groundwater flows and petroleum reservoir recovery processes. The comparison between theory (the large-scaled averaged equations) and experiment (numerical solution of the local volume averaged equations) has allowed us to identify conditions for which the quasi-static theory is acceptable and conditions for which a dynamic theory must be used. Byquasi-static we mean the following: (1) The local capillary pressure,everywhere in the averaging volume, can be set equal to the large-scale capillary pressure evaluated at the centroid of the averaging volume and (2) the large-scale capillary pressure is given by the difference between the large-scale pressures in the two immiscible phases, and is therefore independent of gravitational effects, flow effects and transient effects. Bydynamic, we simply mean a significant departure from the quasi-static condition, thus dynamic effects can be associated with gravitational effects, flow effects and transient effects. To be more precise about the quasi-static condition we need to refer to the relation between the local capillary pressure and the large-scale capillary pressure derived in Part I (Quintard and Whitaker, 1990). Herep c ¦y represents the local capillary pressure evaluated at a positiony relative to the centroid of the large-scale averaging volume, and {p c x represents the large-scale capillary pressure evaluated at the centroid.In addition to{p c } c being evaluated at the centroid, all averaged terms on the right-hand side of Equation (1) are evaluated at the centroid. We can now write the equations describing the quasi-static condition as , , This means that the fluids within an averaging volume are distributed according to the capillary pressure-saturation relationwith the capillary pressure held constant. It also means that the large-scale capillary pressure is devoid of any dynamic effects. Both of these conditions represent approximations (see Section 6 in Part I) and one of our main objectives in this paper is to learn something about the efficacy of these approximations. As a secondary objective we want to explore the influence of dynamic effects in terms of our original theory. In that development only the first four terms on the right hand side of Equation (1) appeared in the representation for the local capillary pressure. However, those terms will provide an indication of the influence of dynamic effects on the large-scale capillary pressure and the large-scale permeability tensor, and that information provides valuable guidance for future studies based on the theory presented in Part I.Roman Letters A scalar that maps {}*/t onto - A scalar that maps {}*/t onto - A interfacial area between the -region and the -region contained within, m2 - A interfacial area between the -region and the -region contained within, m2 - A interfacial area between the -region and the -region contained within, m2 - a vector that maps ({}*/t) onto , m - a vector that maps ({}*/t) onto , m - b vector that maps ({p}– g) onto , m - b vector that maps ({p}– g) onto , m - B second order tensor that maps ({p}– g) onto , m2 - B second order tensor that maps ({p}– g) onto , m2 - c vector that maps ({}*/t) onto , m - c vector that maps ({}*/t) onto , m - C second order tensor that maps ({}*/t) onto , m2 - C second order tensor that maps ({}*/t) onto . m2 - D third order tensor that maps ( ) onto , m - D third order tensor that maps ( ) onto , m - D second order tensor that maps ( ) onto , m2 - D second order tensor that maps ( ) onto , m2 - E third order tensor that maps () onto , m - E third order tensor that maps () onto , m - E second order tensor that maps () onto - E second order tensor that maps () onto - p c =(), capillary pressure relationship in the-region - p c =(), capillary pressure relationship in the-region - g gravitational vector, m/s2 - largest of either or - - - i unit base vector in thex-direction - I unit tensor - K local volume-averaged-phase permeability, m2 - K local volume-averaged-phase permeability in the-region, m2 - K local volume-averaged-phase permeability in the-region, m2 - {K } large-scale intrinsic phase average permeability for the-phase, m2 - K –{K }, large-scale spatial deviation for the-phase permeability, m2 - K –{K }, large-scale spatial deviation for the-phase permeability in the-region, m2 - K –{K }, large-scale spatial deviation for the-phase permeability in the-region, m2 - K * large-scale permeability for the-phase, m2 - L characteristic length associated with local volume-averaged quantities, m - characteristic length associated with large-scale averaged quantities, m - I i i = 1, 2, 3, lattice vectors for a unit cell, m - l characteristic length associated with the-region, m - ; characteristic length associated with the-region, m - l H characteristic length associated with a local heterogeneity, m - - n unit normal vector pointing from the-region toward the-region (n =–n ) - n unit normal vector pointing from the-region toward the-region (n =–n ) - p pressure in the-phase, N/m2 - p local volume-averaged intrinsic phase average pressure in the-phase, N/m2 - {p } large-scale intrinsic phase average pressure in the capillary region of the-phase, N/m2 - p local volume-averaged intrinsic phase average pressure for the-phase in the-region, N/m2 - p local volume-averaged intrinsic phase average pressure for the-phase in the-region, N/m2 - p –{p }, large scale spatial deviation for the-phase pressure, N/m2 - p –{p }, large scale spatial deviation for the-phase pressure in the-region, N/m2 - p –{p }, large scale spatial deviation for the-phase pressure in the-region, N/m2 - P c p –{p }, capillary pressure, N/m2 - {pc}c large-scale capillary pressure, N/m2 - r 0 radius of the local averaging volume, m - R 0 radius of the large-scale averaging volume, m - r position vector, m - , m - S /, local volume-averaged saturation for the-phase - S * {}*{}*, large-scale average saturation for the-phaset time, s - t time, s - u , m - U , m2 - v -phase velocity vector, m/s - v local volume-averaged phase average velocity for the-phase in the-region, m/s - v local volume-averaged phase average velocity for the-phase in the-region, m/s - {v } large-scale intrinsic phase average velocity for the-phase in the capillary region of the-phase, m/s - {v } large-scale phase average velocity for the-phase in the capillary region of the-phase, m/s - v –{v }, large-scale spatial deviation for the-phase velocity, m/s - v –{v }, large-scale spatial deviation for the-phase velocity in the-region, m/s - v –{v }, large-scale spatial deviation for the-phase velocity in the-region, m/s - V local averaging volume, m3 - V volume of the-phase in, m3 - V large-scale averaging volume, m3 - V capillary region for the-phase within, m3 - V capillary region for the-phase within, m3 - V c intersection of m3 - V volume of the-region within, m3 - V volume of the-region within, m3 - V () capillary region for the-phase within the-region, m3 - V () capillary region for the-phase within the-region, m3 - V () , region in which the-phase is trapped at the irreducible saturation, m3 - y position vector relative to the centroid of the large-scale averaging volume, m Greek Letters local volume-averaged porosity - local volume-averaged volume fraction for the-phase - local volume-averaged volume fraction for the-phase in the-region - local volume-averaged volume fraction for the-phase in the-region - local volume-averaged volume fraction for the-phase in the-region (This is directly related to the irreducible saturation.) - {} large-scale intrinsic phase average volume fraction for the-phase - {} large-scale phase average volume fraction for the-phase - {}* large-scale spatial average volume fraction for the-phase - –{}, large-scale spatial deviation for the-phase volume fraction - –{}, large-scale spatial deviation for the-phase volume fraction in the-region - –{}, large-scale spatial deviation for the-phase volume fraction in the-region - a generic local volume-averaged quantity associated with the-phase - mass density of the-phase, kg/m3 - mass density of the-phase, kg/m3 - viscosity of the-phase, N s/m2 - viscosity of the-phase, N s/m2 - interfacial tension of the - phase system, N/m - , N/m - , volume fraction of the-phase capillary (active) region - , volume fraction of the-phase capillary (active) region - , volume fraction of the-region ( + =1) - , volume fraction of the-region ( + =1) - {p } g, N/m3 - {p } g, N/m3  相似文献   

6.
We consider singularly perturbed systems , such that=f(, o, 0). o m , has a heteroclinic orbitu(t). We construct a bifurcation functionG(, ) such that the singular system has a heteroclinic orbit if and only ifG(, )=0 has a solution=(). We also apply this result to recover some theorems that have been proved using different approaches.  相似文献   

7.
Based on the complex viscosity model various steady-state and transient material functions have been completed. The model is investigated in terms of a corotational frame reference. Also, BKZ-type integral constitutive equations have been studied. Some relations between material functions have been derived. C –1 Finger tensor - F[], (F –1[]) Fourier (inverse) transform - rate of deformation tensor in corotating frame - h(I, II) Wagner's damping function - J (x) Bessel function - m parameter inh (I, II) - m(s) memory function - m k, nk integers (powers in complex viscosity model) - P principal value of the integral - parameter in the complex viscosity model - rate of deformation tensor - shear rates - [], [] incomplete gamma function - (a) gamma function - steady-shear viscosity - * complex viscosity - , real and imaginary parts of * - 0 zero shear viscosity - +, 1 + stress growth functions - , 1 - stress relaxation functions - (s) relaxation modulus - 1(s) primary normal-stress coefficient - ø(a, b; z) degenerate hypergeometric function - 1, 2 time constants (parameters of *) - frequency - extra stress tensor  相似文献   

8.
In this paper the flow is studied of an incompressible viscous fluid through a helically coiled annulus, the torsion of its centre line taken into account. It has been shown that the torsion affects the secondary flow and contributes to the azimuthal component of velocity around the centre line. The symmetry of the secondary flow streamlines in the absence of torsion, is destroyed in its presence. Some stream lines penetrate from the upper half to the lower half, and if is further increased, a complete circulation around the centre line is obtained at low values of for all Reynolds numbers for which the analysis of this paper is valid, being the ratio of the torsion of the centre line to its curvature.Nomenclature A =constant - a outer radius of the annulus - b unit binormal vector to C - C helical centre line of the pipe - D rL - g 1000 - K Dean number=Re2 - L 1+r sin - M (L 2+ 2 r 2)1/2 - n unit normal vector to C - P, P pressure and nondimensional pressure - p 0, p pressures of O(1) and O() - Re Reynolds number=aW 0/ - (r, , s), (r, , s) coordinates and nondimensional coordinates - nonorthogonal unit vectors along the coordinate directions - r 0 radius of the projection of C - t unit tangent vector to C - V r, V , V s velocity components along the nonorthogonal directions - Vr, V, V s nondimensional velocity components along - W 0 average velocity in a straight annulus Greek symbols , curvature and nondimensional curvature of C - U, V, W lowest order terms for small in the velocity components along the orthogonal directions t - r, , s first approximations to V r , V, V s for small - =/=/ - kinematic viscosity - density of the fluid - , torsion and nondimensional torsion of C - , stream function and nondimensional stream function - nondimensional streamfunction for U, V - a inner radius of the annulus After this paper was accepted for publication, a paper entitled On the low-Reynolds number flow in a helical pipe, by C.Y. Wang, has appeared in J. Fluid. Mech., Vol 108, 1981, pp. 185–194. The results in Wangs paper are particular cases of this paper for =0, and are also contained in [9].  相似文献   

9.
We establish the saddle-point property of the system of functional differential equations (t) = Ax(t) + Bx((t)) + C ((t)) + f (x(t), x((t))), (0) = 0.Translated from Neliniini Kolyvannya, Vol. 7, No. 3, pp. 302–310, July–September, 2004.  相似文献   

10.
Summary A three-parameter model is introduced to describe the shear rate — shear stress relation for dilute aqueous solutions of polyacrylamide (Separan AP-30) or polyethylenoxide (Polyox WSR-301) in the concentration range 50 wppm – 10,000 wppm. Solutions of both polymers show for a similar rheological behaviour. This behaviour can be described by an equation having three parameters i.e. zero-shear viscosity 0, infinite-shear viscosity , and yield stress 0, each depending on the polymer concentration. A good agreement is found between the values calculated with this three-parameter model and the experimental results obtained with a cone-and-plate rheogoniometer and those determined with a capillary-tube rheometer.
Zusammenfassung Der Zusammenhang zwischen Schubspannung und Schergeschwindigkeit von strukturviskosen Flüssigkeiten wird durch ein Modell mit drei Parametern beschrieben. Mit verdünnten wäßrigen Polyacrylamid-(Separan AP-30) sowie Polyäthylenoxidlösungen (Polyox WSR-301) wird das Modell experimentell geprüft. Beide Polymerlösungen zeigen im untersuchten Schergeschwindigkeitsbereich von ein ähnliches rheologisches Verhalten. Dieses Verhalten kann mit drei konzentrationsabhängigen Größen, nämlich einer Null-Viskosität 0, einer Grenz-Viskosität und einer Fließgrenze 0 beschrieben werden. Die Ergebnisse von Experimenten mit einem Kegel-Platte-Rheogoniometer sowie einem Kapillarviskosimeter sind in guter Übereinstimmung mit den Werten, die mit dem Drei-Parameter-Modell berechnet worden sind.

a Pa–1 physical quantity defined by:a = {1 – ( / 0)}/ 0 - c l concentration (wppm) - D m capillary diameter - L m length of capillary tube - P Pa pressure drop - R m radius of capillary tube - u m s–1 average velocity - v r m s–1 local axial velocity at a distancer from the axis of the tube - shear rate (–dv r /dr) - local shear rate in capillary flow - s–1 wall shear rate in capillary flow - Pa s dynamic viscosity - a Pa s apparent viscosity defined by eq. [2] - ( a ) Pa s apparent viscosity in capillary tube at a distanceR from the axis - 0 Pa s zero-shear viscosity defined by eq. [4] - Pa s infinite-shear viscosity defined by eq. [5] - l ratior/R - kg m density - Pa shear stress - 0 Pa yield stress - r Pa local shear stress in capillary flow - R Pa wall shear stress in capillary flow R = (PR/2L) - v m3 s–1 volume rate of flow With 8 figures and 1 table  相似文献   

11.
Transient propagation of weak pressure perturbations in a homogeneous, isotropic, fluid saturated aquifer has been studied. A damped wave equation for the pressure in the aquifer is derived using the macroscopic, volume averaged, mass conservation and momentum equations. The equation is applied to the case of a well in a closed aquifer and analytical solutions are obtained to two different flow cases. It is shown that the radius of influence propagates with a finite velocity. The results show that the effect of fluid inertia could be of importance where transient flow in porous media is studied.List of symbols b Thickness of the aquifer, m - c 0 Wave velocity, m/s - k Permeability of the porous medium, m2 - n Porosity of the porous medium - p( ,t) Pressure, N/m2 - Q Volume flux, m3/s - r Radial coordinate, m - r w Radius of the well, m - s Transform variable - S Storativity of the aquifer - S d(r, t) Drawdown, m - t Time, s - T Transmissivity of the aquifer, m2/s - ( ,t) Velocity of the fluid, m/s - Coordinate vector, m - z Vertical coordinate, m - Coefficient of compressibility, m2/N - Coefficient of fluid compressibility, m2/N - Relaxation time, s - (r, t) Hydraulic potential, m - Dynamic viscosity of the fluid, Ns/m2 - Dimensionless radius - Density of the fluid, Ns2/m4 - (, ) Dimensionless drawdown - Dimensionless time - , x Dummy variables - 0, 1 Auxilary functions  相似文献   

12.
Summary The viscoelastic properties of 65/35 styrenen-butyl methacrylate random copolymers were determined using the Eccentric Rotating Disks device of the Rheometrics Mechanical Spectrometer. Similar to the behavior observed in homopolymers, an increase in the molecular weight of the copolymer resulted in extension of the rubbery plateau and in a reduction in the terminal region. The dynamic complex viscosity showed onset of non-Newtonian flow at higher frequencies, with the non-Newtonian region increasing with increasing molecular weight.The elastic modulus,G, was dependent upon the frequency,, asG 1.5 in the terminal region, rather than asG 2 observed for polystyrene. The viscous modulus,G, was proportional to the frequency,, asG , similar to what is observed for polystyrene. The dynamic viscosity | *| at high frequencies showed a region independent of molecular weight where a power law of | *| 0.9 is applicable, consistent with entanglement models. Thy dynamic viscosity at low frequencies in the Newtonian region is related to molecular weight as |*| . Using WLF equations, the coefficient of expansion, f , was obtained that, together with glass transition, showed a negative deviation from the Fox-Flory relationship.
Zusammenfassung Die viskoelastischen Eigenschaften von statistischen 65/35-Styrol/n-Butyl-Methacrylat-Kopolymeren wurden mit Hilfe einer Maxwell-Rheometer-Anordnung in Verbindung mit dem Mechanischen Spektrometer der Fa. Rheometrics bestimmt. Ähnlich dem bei Homopolymeren beobachteten Verhalten ergab sich auch hier mit wachsendem Molekulargewicht eine Verbreiterung des Kautschuk-Plateaus und eine Verkleinerung des Endbereichs. Die komplexe Viskosität zeigte erst bei höheren Frequenzen das Einsetzen nicht-newtonschen Fließens an, wobei der nichtnewtonsche Bereich mit steigendem Molekulargewicht größer wurde.Der SpeichermodulG ergab sich im Endbereich als proportional zu 1,5, im Unterschied zu der bei Polystyrol beobachteten Proportionalität mit 2. Dagegen war der VerlustmodulG der Frequenz direkt proportional, ähnlich wie es auch bei Polystyrol beobachtet worden war. Die dynamische Viskosität | *| zeigte unabhängig vom Molekulargewicht bei hohen Frequenzen einen Bereich, in dem eine Potenz-Beziehung | *| ~ 0,9 herrschte, was auf die Wirkung von Verzweigungen hindeutet. Dagegen galt bei den niedrigen Frequenzen des newtonschen Bereichs|*| ~ . Mit Hilfe der WLF-Gleichung wurde der Ausdehnungskoeffizient f bestimmt, der ebenso wie der Glasübergang eine negative Abweichung von der Fox-Flory-Beziehung zeigte.


With 10 figures and 1 table  相似文献   

13.
B. Hinkelmann 《Rheologica Acta》1982,21(4-5):491-493
From literature some representative equations have been compiled describing the influence of filler on the viscosity of polymer melts. By application of these on the experimental results obtained from GF-SAN it was found that the relative viscosity R , i.e. the ratio of the viscosities of the filled and unfilled melt, shows a pronounced dependence on the shear rate but not on the shear stress. Defining R with constant and not with constant (as it is usually done), an analytical approach is possible independent of Further the influence of pressure, temperature and filler content on the zero-shear viscosity of filled polymer melts may be expressed by a modified Arrhenius equation.
  相似文献   

14.
Simultaneous measurements of the mean streamwise and radial velocities and the associated Reynolds stresses were made in an air-solid two-phase flow in a square sectioned (10×10 cm) 90° vertical to horizontal bend using laser Doppler velocimetry. The gas phase measurements were performed in the absence of solid particles. The radius ratio of the bend was 1.76. The results are presented for two different Reynolds numbers, 2.2×105 and 3.47×105, corresponding to mass ratios of 1.5×10–4 and 9.5×10–5, respectively. Glass spheres 50 and 100 m in diameter were employed to represent the solid phase. The measurements of the gas and solid phase were performed separately. The streamwise velocity profiles for the gas and the solids crossed over near the outer wall with the solids having the higher speed near the wall. The solid velocity profiles were quite flat. Higher negative slip velocities are observed for the 100 m particles than those for the 50 gm particles. At angular displacement =0°, the radial velocity is directed towards the inner wall for both the 50 and 100 m particles. At =30° and 45°, particle wall collisions cause a clear change in the radial velocity of the solids in the region close to the outer wall. The 100 m particle trajectories are very close to being straight lines. Most of the particle wall collisions occur between the =30° and 60° stations. The level of turbulence of the solids was higher than that of the air.List of symbols D hydraulic diameter (100 mm) - De Dean number,De = - mass flow rate - number of particles per second (detected by the probe volume) - r radial coordinate direction - r i radius of curvature of the inner wall - r 0 radius of curvature of the outer wall - r * normalized radial coordinate, - R mean radius of curvature - Re Reynolds number, - R r radius ratio, - U ,U z mean streamwise velocity - U r ,U y mean radial velocity - U b bulk velocity - , z rms fluctuating streamwise velocity - r , y rms fluctuating radial velocity - -r shear stress component - z-y shear stress component - x spanwise coordinate direction - x * normalized spanwise coordinate, - y radial coordinate direction in straight ducts - y * normalized radial coordinate in straight ducts, - z streamwise coordinate direction in straight ducts - z * normalized streamwise coordinate in straight ducts, Greek symbols streamwise coordinate direction - kinematic viscosity of air  相似文献   

15.
We study the modelling of purely conductive heat transfer between a porous medium and an external fluid within the framework of the volume averaging method. When the temperature field for such a system is classically determined by coupling the macroscopic heat conduction equation in the porous medium domain to the heat conduction equation in the external fluid domain, it is shown that the phase average temperature cannot be predicted without a generally negligible error due to the fact that the boundary conditions at the interface between the two media are specified at the macroscopic level.Afterwards, it is presented an alternative modelling by means of a single equation involving an effective thermal conductivity which is a function of point inside the interfacial region.The theoretical results are illustrated by means of some numerical simulations for a model porous medium. In particular, temperature fields at the microscopic level are presented.Roman Letters sf interfacial area of thes-f interface contained within the macroscopic system m2 - A sf interfacial area of thes-f interface contained within the averaging volume m2 - C p mass fraction weighted heat capacity, kcal/kg/K - g vector that maps to s , m - h vector that maps to f , m - K eff effective thermal conductivity tensor, kcal/m s K - l s,l f microscopic characteristic length m - L macroscopic characteristic length, m - n fs outwardly directed unit normal vector for thef-phase at thef-s interface - n outwardly directed unit normal vector at the dividing surface. - R 0 REV characteristic length, m - T i macroscopic temperature at the interface, K - error on the external fluid temperature due to the macroscopic boundary condition, K - T * macroscopic temperature field obtained by solving the macroscopic Equation (3), K - V averaging volume, m3 - V s,V f volume of the considered phase within the averaging volume, m3. - mp volume of the porous medium domain, m3 - ex volume of the external fluid domain, m3 - s , f volume of the considered phase within the volume of the macroscopic system, m3 - dividing surface, m2 - x, z spatial coordinates Greek Letters s, f volume fraction - ratio of the effective thermal conductivity to the external fluid thermal conductivity - * macroscopic thermal conductivity (single equation model) kcal/m s K - s, f microscopic thermal conductivities, kcal/m s K - spatial average density, kg/m3 - microscopic temperature, K - * microscopic temperature corresponding toT *, K - spatial deviation temperature K - error in the temperature due to the macroscopic boundary conditions, K - * i macroscopic temperature at the interface given by the single equation model, K - spatial average - s , f intrinsic phase average.  相似文献   

16.
Summary A probabilistic model of the geometric imperfections of a real structure is proposed, in order to provide a general theory of the stochastic response of structures in presence of small random deviations from the perfect scheme. The main statistical measures of the stochastic response are derived and an application to the study of a particular conservative elastic system is developed.
Sommario Si propone una teoria generale della risposta probabilistica di strutture, in presenza di piccole deviazioni aleatorie dei dati iniziali rispetto allo schema geometrico perfetto. Si deducono le principali proprietà statistiche della risposta della struttura a sollecitazioni esterne deterministiche, e si sviluppa una applicazione riguardante il comportamento aleatorio di un particolare sistema elastico conservativo.

List of symbols element of the sample space of events - kn random variables modelling the structural imperfections - P(o) probability density of random variables - random imperfection of the unloaded structure - u additional displacement of the loaded structure - uo deterministic fundamental solution for the perfect structure - difference between the additional displacement of the loaded structure and the deterministic fundamental solution for the perfect structure - V1=u1 buckling mode of the perfect structure - i intrinsic coordinates of the structure - suitable measure of the magnitude of the random imperfections - scalar geometric variable representing the internal product - random imperfection divided by - single scalar variable denoting the magnitude of the prescribed loads - potential energy of the structure - potential energy of the perfect structure - difference between and - c lowest critical load - s real local maximum for the magnitude of the prescribed loads - c divided by S - E{} expected value of a random variable - 2 variance of a random variable - , random variables defined by Eq. (21)  相似文献   

17.
Zusammenfassung In einem Dehnungsrheometer werden Spannungs-Dehnungs-Diagramme von Polyäthylen-Schmelzen bei 150 °C und bei konstanter Dehnungsgeschwindigkeit gemessen ( zwischen 0,001 und 1 sec–1). Weiterhin wird der reversible (elastische) Dehnungsanteil bestimmt. Messungen mit einem Dehnungstester für Kunststoff-Schmelzen ergänzen die Ausführungen.Die Ergebnisse zeigen deutlich, daß bei Dehnung mit zunehmender Verformungsgeschwindigkeit die Dehnungsviskosität nicht abnimmt, im Gegensatz zu dem bekannten strukturviskosen Verhalten bei Scherung.Bei Dehnungen bis zu=1 kann das Verhalten unabhängig von beschrieben werden, wenn als viskoelastische Materialfunktion die Dehnungs-Spannviskosität betrachtet wird. In diesem Bereich von gilt dabei die BeziehungT(t)=3 s (t) mit s (t) als zeitabhängige Scherviskosität im linear-viskoelastischen Bereich.Bei größeren Dehnungen und nicht zu kleinen Dehnungsgeschwindigkeiten zeigt verzweigtes Polyäthylen eine zusätzliche starke Spannungszunahme. In dem Bereich dieser zusätzlichen Verfestigung ist das Verhalten im wesentlichen eine Funktion der Dehnung und fast unabhängig von . Die zusätzliche Verfestigung scheint eine Folge der Verzweigungsstruktur des verzweigten Polyäthylens zu sein, da bei Linear-PE ein derartiger Verlauf des Spannungs-Dehnungs-Diagramms nicht beobachtet wird.Die Betrachtung des reversiblen Dehnungsanteils R zeigt bei der ausführlich untersuchten Schmelze I (verzweigtes PE) drei verschiedene Bereiche: Unterhalb einer Grenzdehnungsgeschwindigkeit ist R =0, unterhalb einer Versuchszeitt ** ist R =. Im dazwischenliegenden Bereich treten elastische und viskose Dehnungsanteile auf,= R + V , wobei für niedrige gilt, daß R lg . Die Grenze wird der Frequenz der thermisch aktivierten Platzwechsel zugeordnet,t ** erscheint als Zeit, innerhalb der die Verhakungen wie fixierte Vernetzungen wirken.In dem Anhang wird der Einfluß der Grenzflächenspannung zwischen PE-Schmelze und Silikonöl auf die Ergebnisse der Dehnungsversuche diskutiert.
Summary Stress-strain relations for different PE melts are measured at 150 °C in an extensional rheometer under the condition of a constant extensional strain rate ( between 0,001 and 1 sec–1). Further, the recoverable (elastic) portion R of the total strain ( in Hencky's measure) is determined and additional measurements with a tensile tester for polymer melts are described.The results show clearly that in extension there is no decrease of the tensile viscosity with increasing deformation rate, in contrast to the well-known pseudoplastic behaviour in shear. Within total strains<1 the tensile behaviour can be described independently from by means of a viscoelastic material function called stressing viscosity . In this range of the relation T (t)=3 s (t) holds, where s (t) is the stressing viscosity in shear in the linear viscoelastic range. For larger tensile strains and not too small branched PB shows a remarkable increase in stress. This work-hardening behaviour is mainly a function of and almost independent from . This additional hardening seems to be due to the branches in branched PE, because linear PE does not show this effect.The discussion of the recoverable tensile strain R gives three regions of tensile rate: Below a critical there is R =0. At times shorter thant ** the equation R = is valid. Within these limits both elastic and viscous portions of the total strain= R + V exist. may correlate with the frequency of the thermally activated position changes of the molecular segments.t ** is assumed to be the time for the entanglements to act as fixed cross-links.In the appendix the influence of the interface tension between PE melt and silicone oil on the results of the tensile experiments is discussed.


Vorgetragen auf der Deutschen Rheologen-Tagung, Berlin, 11.-13. Mai 1970.

An der Weiterentwicklung des Dehnungsrheometers, an der Durchführung und Auswertung der Messungen waren die HerrenB. Kienle, F. Landmesser, M, Reuther undF. Scherr beteiligt. Herr Dr.F.Ramsteiner und HerrH. Schroeck haben sich um die Herstellung der Stränge aus Linear-PE bemüht. Herr Dr.W. Ball besorgte die GPC-Messungen und Herr Dr.P. Simak die Ultrarot-Untersuchung. Den vorgenannten Herren sei für ihre Hilfe beim Zustandekommen dieser Arbeit gedankt. Herrn Dr.H. Baur danke ich für wertvolle Diskussionen.  相似文献   

18.
We report non-equilibrium molecular dynamics simulations of rigid and non-rigid dumbbell fluids to determine the contribution of internal degrees of freedom to strain-rate-dependent shear viscosity. The model adopted for non-rigid molecules is a modification of the finitely extensible nonlinear elastic (FENE) dumbbell commonly used in kinetic theories of polymer solutions. We consider model polymer melts — that is, fluids composed of rigid dumbbells and of FENE dumbbells. We report the steady-state stress tensor and the transient stress response to an applied Couerte strain field for several strain rates. We find that the rheological properties of the rigid and FENE dumbbells are qualitatively and quantitatively similar. (The only exception to this is the zero strain rate shear viscosity.) Except at high strain rates, the average conformation of the FENE dumbbells in a Couette strain field is found to be very similar to that of FENE dumbbells in the absence of strain. The theological properties of the two dumbbell fluids are compared to those of a corresponding fluid of spheres which is shown to be the most non-Newtonian of the three fluids considered.Symbol Definition b dimensionless time constant relating vibration to other forms of motion - F force on center of mass of dumbbell - F i force on bead i of dumbbell - F force between center of masses of dumbbells and - F ij force between beads i and j - h vector connecting bead to center of mass of dumbbell - H dimensionless spring constant for dumbbells, in units of / 2 - I moment of inertia of dumbbell - J general current induced by applied field - k B Boltzmann's constant - L angular momentum - m mass of bead, (= m/2) - M mass of dumbbell, g - N number of dumbbells in simulation cell - P translational momentum of center of mass of dumbbell - P pressure tensor - P xy xy component of pressure tensor - Q separation of beads in dumbbell - Q eq equilibrium extension of FENE dumbbell and fixed extension of rigid dumbbell - Q 0 maximum extension of dumbbell - r ij vector connecting beads i and j - r position vector of center of mass dumbbell - R vector connecting centers of mass of two dumbbells - t time - t * dimensionless time, in units of m/ - T * dimensionless temperature, in units of /k - u potential energy - u velocity vector of flow field - u x x component of velocity vector - V volume of simulation cell - X general applied field - strain rate, s–1 - * dimensionless shear rate, in units of /m 2 - general transport property - Lennard-Jones potential well depth - friction factor for Gaussian thermostat - shear viscosity, g/cms - * dimensionless shear viscosity, in units of m/ 2 - * dimensionless number density, in units of –3 - Lennard-Jones separation of minimum energy - relaxation time of a fluid - angular velocity of dumbbell - orientation angle of dumbbell   相似文献   

19.
Let be an arbitrary smooth bounded domain in and > 0 be arbitrary. Squeeze by the factor in the y-direction to obtain the squeezed domain = {(x,y)(x,y)}. In this paper we study the family of reaction-diffusion equations
where f is a dissipative nonlinearity of polynomial growth. In a previous paper we showed that, as 0, the equations (E ) have a limiting equation which is an abstract semilinear parabolic equation defined on a closed linear subspace of H 1(). We also proved that the family of the corresponding attractors is upper semicontinuous at = 0. In this paper we prove that, if satisfies some natural assumptions, then there is a family of inertial C 1-manifolds for (E ) of some fixed finite dimension . Moreover, as 0, the flow on converges in the C 1-sense to the limit flow on .  相似文献   

20.
Barletta  A.  Zanchini  E. 《Heat and Mass Transfer》1994,29(5):285-290
The non-uniform heat generation in a cylindrical resistor crossed by an alternating electric current is considered. The time averaged and dimensionless temperature distribution in the resistor is analytically evaluated. Two dimensionless functions are reported in tables which allow one to determine the time averaged temperature field for arbitrarily chosen values of the physical properties and of the radius of the resistor, of the electric current frequency, of the Biot number and of either the power generated per unit length or the effective electric current.
Zeitliche Temperaturverteilung in einem zylinderförmigen Wechselstromwiderstand
Zusammenfassung Es wird ungleichförmige Wärmeerzeugung in einem mit Wechselstrom belasteten Widerstand unterstellt, woraus sich die darin einstellende, zeitlich gemittelte, dimensionslose Temperaturverteilung analytisch berechnen läßt. Zwei tabellierte dimensionslose Funktionen gestatten die Bestimmung dieser Temperaturverteilung für beliebige Werte der Stoff- und Feldparameter, des Widerstandhalbmessers, der elektrischen Frequenz, der Biot-Zahl, sowie der erzeugten Leistung pro Längeneinheit oder des effektiven Stroms.

Nomenclature A intregration constant introduced in Eq. (15) - Bi Biot numberhr 0/ - c speed of light in empty space - c p specific heat at constant pressure - E electric field - E z component ofE alongz - E amplitude of the electric field oscillations - electric permittivity - f function ofs and defined in Eq. (22) - function of defined in Eq. (45) - g function ofs and defined in Eq. (34) - h convection heat transfer coefficient - H magnetic field - i imaginary uniti=–1 - I electric current - I eff effective electric currentI eff=I/2 - Im imaginary part of a complex number - J current density - J n Bessel function of first kind and ordern - thermal conductivity - magnetic permeability - 0 magnetic permeability of free space - q g power generated per unit volume - time average of the power generated per unit volume - Q time averaged power per unit length - r radial coordinate - R electric resistance per unit length - r 0 radius of the cylinder - Re real part of a complex number - mass density - s dimensionless radial coordinates=r/r 0 - s,s integration variables - electric conductivity - t time - T temperature - time averaged temperature - T f fluid temperature outside the boundary layer - time average of the surface temperature of the cylinder - dimensionless temperature defined in Eq. (27) - x position vector - x arbitrary real variable - x integration variable - Y 0 Bessel function of second kind and order 0 - z axial coordinate - z unit vector parallel to the axis of the cylinder - angular frequency - dimensionless parameter =r0 - · modulus of a complex number - equal by definition  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号