首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 950 毫秒
1.
Two porous hydrogen‐bonded organic frameworks (HOFs) based on arene sulfonates and guanidinium ions are reported. As a result of the presence of ionic backbones appended with protonic source, the compounds exhibit ultra‐high proton conduction values (σ) 0.75× 10?2 S cm?1 and 1.8×10?2 S cm?1 under humidified conditions. Also, they have very low activation energy values and the highest proton conductivity at ambient conditions (low humidity and at moderate temperature) among porous crystalline materials, such as metal–organic frameworks (MOFs) and covalent organic frameworks (COFs). These values are not only comparable to the conventionally used proton exchange membranes, such as Nafion used in fuel cell technologies, but is also the highest value reported in organic‐based porous architectures. Notably, this report inaugurates the usage of crystalline hydrogen‐bonded porous organic frameworks as solid‐state proton conducting materials.  相似文献   

2.
Siloxane‐containing materials are a large and important class of organic‐inorganic hybrids. In this report, a practical variation of the Suzuki polymerization to generate semiconducting polymeric hybrids based on siloxane units, which proceeds under essentially nonbasic conditions, is presented. This method generates solution‐processable poly(diketopyrrolopyrrole‐alt‐benzothiadiazole) (PDPPBT‐Si) consisting of the hybrid siloxane substituents, which could not be made using conventional methods. PDPPBT‐Si exhibits excellent ambipolar transistor performance with well‐balanced hole and electron FET mobilities. The siloxane‐containing DPP‐thiophene polymer classes (PDPP3T‐Si and PDPP4T‐Si), synthesized by this method, exhibit high hole mobility of up to 1.29 cm2 V?1 s?1. This synthetic approach should provide access to a variety of novel siloxane‐containing conjugated semiconductor classes by using a variety of aryldihalides and aryldiboronic acids/esters.  相似文献   

3.
A porous carbon designated as MOF‐5‐C was prepared by directly carbonizing a metal–organic framework (MOF‐5). The morphology and microstructure of MOF‐5‐C were characterized by scanning electron microscopy, N2 adsorption, and powder X‐ray diffraction. The MOF‐5‐C retained the original porous structures of MOF‐5, and showed a high Brunauer–Emmett–Teller surface area (1808 m2 g?1) and large pore volume (3.05 cm3 g?1). To evaluate its adsorption performance, the MOF‐5‐C was used as an adsorbent for the solid‐phase extraction of four phthalate esters from bottled water, peach juice, and soft drink samples followed by high‐performance liquid chromatographic analysis. Several parameters that could affect the extraction efficiencies were investigated. Under the optimum conditions, a good linearity was achieved in the concentration range of 0.1–50.0 ng mL?1 for bottled water sample and 0.2–50.0 ng mL?1 for peach juice and soft drink samples. The limits of detection of the method (S/N = 3) were 0.02 ng mL?1 for bottled water sample, and 0.04–0.05 ng mL?1 for peach juice and soft drink samples. The results indicated that the MOF‐5‐C exhibited an excellent adsorption capability for trace levels of phthalate esters, and it could be a promising adsorbent for the preconcentration of other organic compounds.  相似文献   

4.
Hydrophobic reduced graphene oxides (rGOs) were generated in agarose hydrogel beads (AgarBs) by NaBH4 reduction of graphene oxides (GOs) initially loaded in the AgarBs. The resulting rGO‐loaded AgarBs were able to effectively adsorb organic compounds in water as a result of the attractive hydrophobic force between the rGOs in the AgarBs and the organic compounds dissolved in aqueous media. The adsorption capacity of the rGOs was fairly high even toward reasonably water‐soluble organic compounds such as rhodamine B (321.7 mg g?1) and aspirin (196.4 mg g?1). Yet they exhibited salinity‐enhanced adsorption capacity and preferential adsorption of organic compounds with lower solubility in water. Such peculiar adsorption behavior highlights the exciting possibility for adopting an adsorption strategy, driven by hydrophobic forces, in practical wastewater treatment processes.  相似文献   

5.
A series of metal–organic frameworks based on a flexible, highly charged Bpybc ligand, namely 1? Mn?OH?, 2? Mn?SO42?, 3? Mn?bdc2?, 4? Eu?SO42? (H2BpybcCl2=1,1′‐bis(4‐carboxybenzyl)‐4,4′‐bipyridinium dichloride, H2bdc=1,4‐benzenedicarboxylic acid) have been obtained by a self‐assembly process. Single‐crystal X‐ray‐diffraction analysis revealed that all of these compounds contained the same n‐fold 2D→3D Borromean‐entangled topology with irregular butterfly‐like pore channels that were parallel to the Borromean sheets. These structures were highly tolerant towards various metal ions (from divalent transition metals to trivalent lanthanide ions) and anion species (from small inorganic anions to bulky organic anions), which demonstrated the superstability of these Borromean linkages. This non‐interpenetrated entanglement represents a new way of increasing the stability of the porous frameworks. The introduction of bipyridinium molecules into the porous frameworks led to the formation of cationic surface, which showed high affinities to methanol and water vapor. The distinct adsorption and desorption isotherms of methanol vapor in four complexes revealed that the accommodated anion species (of different size, shape, and location) provided a unique platform to tune the environment of the pore space. Measurements of the adsorption of various organic vapors onto framework 1? Mn?OH? further revealed that these pores have a high adsorption selectivity towards molecules with different sizes, polarities, or π‐conjugated structures.  相似文献   

6.
Dimensionality plays an important role in the charge transport properties of organic semiconductors. Although three‐dimensional semiconductors, such as Si, are common in inorganic materials, imparting electrical conductivity to covalent three‐dimensional organic polymers is challenging. Now, the synthesis of a three‐dimensional π‐conjugated porous organic polymer (3D p‐POP) using catalyst‐free Diels–Alder cycloaddition polymerization followed by acid‐promoted aromatization is presented. With a surface area of 801 m2 g?1, full conjugation throughout the carbon backbone, and an electrical conductivity of 6(2)×10?4 S cm?1 upon treatment with I2 vapor, the 3D p‐POP is the first member of a new class of permanently porous 3D organic semiconductors.  相似文献   

7.
Airborne formaldehyde, which is a highly problematic volatile organic compound (VOC) pollutant, is adsorbed by polymeric amine‐incorporated silicas (aminosilicas), and the factors that affect the adsorption performance are systematically investigated. Three different types of polymeric amines 1) poly(ethyleneimine) branched (PEIBR); 2) poly(ethyleneimine) linear (PEILI); and 3) poly(allylamine) (PAA) are impregnated into two types of porous silicas [SBA‐15 and mesocellular foam (MCF) silicas] with systematic changes of the amine loadings. The adsorption results demonstrate that the adsorption capacity increases along with the amine loading until the polymeric amines completely fill the silica pores. This results in the MCF silica, which has a larger pore volume and hence can accommodate more polymeric amine before completely filling the pore, giving materials that adsorb more formaldehyde, with the largest adsorption capacity, q, of up to 5.7 mmolHCHO g?1 among the samples studied herein. Of the three different types of polymers, PAA, comprised of 100 % primary amines, showed the highest amine efficiency μ (mmolHCHO/mmolN) for capturing formaldehyde. The chemical structures of the adsorbed formaldehyde are analyzed by 13C cross‐polarization magic‐angle spinning (CP‐MAS) NMR, and it is demonstrated that the adsorbed formaldehyde is chemically attached to the aminosilica surface, forming hemiaminal and imine species. Because the chemical adsorption of formaldehyde forms covalent bonds, it is not desorbed from the aminosilicas below 130 °C based on temperature‐programed‐desorption (TPD) analysis. The high formaldehyde‐adsorption capacity and stability of the trapped formaldehyde on the amine surface in this study reveal the potential utility of aminosilicas as formaldehyde abatement materials.  相似文献   

8.
Porous nitrogen‐rich carbon (POF‐C‐1000) that was synthesized by using a porous organic framework (POF) as a self‐sacrificing host template in a nanocasting process possessed a high degree of graphitization in an ordered structural arrangement with large domains and well‐ordered arrays of carbon sheets. POF‐C‐1000 exhibits favorable electrocatalytic activity for the oxygen‐reduction reaction (ORR) with a clear positive shift of about 40 mV in the onset potential compared to that of a traditional, commercially available Pt/C catalyst. In addition, irrespective of its moderate surface area (785 m2 g?1), POF‐C‐1000 showed a reasonable H2 adsorption of 1.6 wt % (77 K) and a CO2 uptake of 3.5 mmol g?1 (273 K).  相似文献   

9.
Carbon aerogels (CAs) with 3D interconnected networks hold promise for application in areas such as pollutant treatment, energy storage, and electrocatalysis. In spite of this, it remains challenging to synthesize high‐performance CAs on a large scale in a simple and sustainable manner. We report an eco‐friendly method for the scalable synthesis of ultralight and superporous CAs by using cheap and widely available agarose (AG) biomass as the carbon precursor. Zeolitic imidazolate framework‐8 (ZIF‐8) with high porosity is introduced into the AG aerogels to increase the specific surface area and enable heteroatom doping. After pyrolysis under inert atmosphere, the ZIF‐8/AG‐derived nitrogen‐doped CAs show a highly interconnected porous mazelike structure with a low density of 24 mg cm?3, a high specific surface area of 516 m2 g?1, and a large pore volume of 0.58 cm?3 g?1. The resulting CAs exhibit significant potential for application in the adsorption of organic pollutants.  相似文献   

10.
Aiming at tuning the adsorption and fluorescence properties of targeted porous organic polymer, four new aminal‐linked porous organic polymers (NAPOPs) were synthesized through the reaction of 1,4‐Bis(4,6‐diamino‐s‐triazin‐2‐yl) benzene (BATB) with four kinds of aldehydes substituted with different N‐heterocyclic groups. Among the polymers, NAPOP‐3 decorated with 5‐phenyl‐tetrazole group shows the largest CO2 adsorption capacity (2.52 mmol g?1 at 273 K and 100 kPa) because of its relative large surface area, while NAPOP‐1 decorated with piperazine groups shows relative large CO2/N2 adsorption selectivity (77 at 273 K and 100 kPa), attributable to its large CO2 adsorption heats and cabined pore (<4 Å). Meanwhile, NAPOP‐1 and ?3 exhibit high adsorption rate toward iodine with a high capacity (>240 wt %). In addition, different luminescence emissions were also observed for NAPOPs, indicating different intramolecular charger transfer occurred inside polymer networks. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1724–1730  相似文献   

11.
Porous materials with well‐defined pore structures have received considerable attention in the past decades due to their unique structures and wide applications. Most porous materials such as zeolites, metal‐organic frameworks, covalent organic frameworks, and porous organic polymers are extended to infinite frameworks or networks by robust covalent or coordination bonds. Porous molecular cages composed of discrete molecules with permanent cavities are an emerging class of porous material and the discrete molecules assemble into solids by weak intermolecular interaction. In comparison to porous extended solids such as metal‐organic frameworks and covalent organic frameworks, porous molecular cage solids are generally soluble in organic solvents thus allowing solution processing, making them more convenient to apply in many fields. This review mainly focuses on the recent advances of application of porous molecular cages (porous organic cages and metal‐organic cages) for enantioselective recognition and separation from 2010 to present, including gas chromatography, capillary electrochromatography, chiral fluorescent recognition, chiral potentiometric sensing, and enantioselective adsorption. Furthermore, the two important family members of porous molecular cages, porous organic cages and metal‐organic cages, are also discussed.  相似文献   

12.
Recently, porous organic cage crystals have become a real alternative to extended framework materials with high specific surface areas in the desolvated state. Although major progress in this area has been made, the resulting porous compounds are restricted to the microporous regime, owing to the relatively small molecular sizes of the cages, or the collapse of larger structures upon desolvation. Herein, we present the synthesis of a shape‐persistent cage compound by the reversible formation of 24 boronic ester units of 12 triptycene tetraol molecules and 8 triboronic acid molecules. The cage compound bears a cavity of a minimum inner diameter of 2.6 nm and a maximum inner diameter of 3.1 nm, as determined by single‐crystal X‐ray analysis. The porous molecular crystals could be activated for gas sorption by removing enclathrated solvent molecules, resulting in a mesoporous material with a very high specific surface area of 3758 m2 g?1 and a pore diameter of 2.3 nm, as measured by nitrogen gas sorption.  相似文献   

13.
Two metalloporphyrin octacarboxylates were used to link copper(II) nodes for the formation of two novel porous mixed‐metal metal–organic frameworks (M′MOFs) containing nanopore cages (2.1 nm in diameter) or nanotubular channels (1.5 nm in diameter). The highly active Cu2+ sites on the nanotubular surfaces of the stable porous M′MOF ZJU‐22 , stabilized by three‐connected nets, lead to the superior catalytic activity for the cross‐dehydrogenative coupling (CDC) reaction.  相似文献   

14.
Porous materials have many structural advantages for energy storage and conversion devices such as rechargeable batteries, supercapacitors, and fuel cells. When applied as a host material in lithium‐sulfur batteries, porous silica materials with a pomegranate‐like architecture can not only act as a buffer matrix for accommodating a large volume change of sulfur, but also suppress the polysulfide shuttle effect. The porous silica/sulfur composite cathodes exhibit excellent electrochemical performances including a high specific capacity of 1450 mA h g?1, a reversible capacity of 82.9 % after 100 cycles at a rate of C/2 (1 C=1672 mA g?1) and an extended cyclability over 300 cycles at 1 C‐rate. Furthermore, the high polysulfide adsorption property of porous silica has been proven by ex‐situ analyses, showing a relationship between the surface area of silica and polysulfide adsorption ability. In particular, the modified porous silica/sulfur composite cathode, which is treated by a deep‐lithiation process in the first discharge step, exhibits a highly reversible capacity of 94.5 % at 1C‐rate after 300 cycles owing to a formation of lithiated‐silica frames and stable solid‐electrolyte‐interphase layers.  相似文献   

15.
It is highly desirable to develop electroactive organic materials and their derivatives as green alternatives of cathodes for sustainable and cost‐effective lithium‐ion batteries (LIBs) in energy storage fields. Herein, compact two‐dimensional coupled graphene and porous polyaryltriazine‐derived frameworks with tailormade pore structures are fabricated by using various molecular building blocks under ionothermal conditions. The porous nanosheets display nanoscale thickness, high specific surface area, and strong coupling of electroactive polyaryltriazine‐derived frameworks with graphene. All these features make it possible to efficiently depress the dissolution of redox moieties in electrolytes and to boost the electrical conductivity of whole electrode. When employed as a cathode in LIBs, the two‐dimensional porous nanosheets exhibit outstanding cycle stability of 395 mAh g?1 at 5 A g?1 for more than 5100 cycles and excellent rate capability of 135 mAh g?1 at a high current density of 15 A g?1.  相似文献   

16.
We report two isoreticular 3D peptide‐based porous frameworks formed by coordination of the tripeptides Gly‐L ‐His‐Gly and Gly‐L ‐His‐L ‐Lys to CuII which display sponge‐like behaviour. These porous materials undergo structural collapse upon evacuation that can be reversed by exposure to water vapour, which permits recovery of the original open channel structure. This is further confirmed by sorption studies that reveal that both solids exhibit selective sorption of H2O while CO2 adsorption does not result in recovery of the original structures. We also show how the pendant aliphatic amine chains, present in the framework from the introduction of the lysine amino acid in the peptidic backbone, can be post‐synthetically modified to produce urea‐functionalised networks by following methodologies typically used for metal–organic frameworks built from more rigid “classical” linkers.  相似文献   

17.
Classical organic anode materials for Na‐ion batteries are mostly based on conjugated carboxylate compounds, which can stabilize added electrons by the double‐bond reformation mechanism. Now, 1,4‐cyclohexanedicarboxylic acid (C8H12O4, CHDA) with a non‐conjugated ring (?C6H10?) connected with carboxylates is shown to undergo electrochemical reactions with two Na ions, delivering a high charge specific capacity of 284 mA h g?1 (249 mA h g?1 after 100 cycles), and good rate performance. First‐principles calculations indicate that hydrogen‐transfer‐mediated orbital conversion from antibonding π* to bonding σ stabilize two added electrons, and reactive intermediate with unpaired electron is suppressed by localization of σ‐bonds and steric hindrance. An advantage of CHDA as an anode material is good reversibility and relatively constant voltage. A large variety of organic non‐conjugated compounds are predicted to be promising anode materials for sodium‐ion batteries.  相似文献   

18.
Sustainable carbon materials have received particular attention in CO2 capture and storage owing to their abundant pore structures and controllable pore parameters. Here, we report high‐surface‐area hierarchically porous N‐doped carbon microflowers, which were assembled from porous nanosheets by a three‐step route: soft‐template‐assisted self‐assembly, thermal decomposition, and KOH activation. The hydrazine hydrate used in our experiment serves as not only a nitrogen source, but also a structure‐directing agent. The activation process was carried out under low (KOH/carbon=2), mild (KOH/carbon=4) and severe (KOH/carbon=6) activation conditions. The mild activated N‐doped carbon microflowers (A‐NCF‐4) have a hierarchically porous structure, high specific surface area (2309 m2 g?1), desirable micropore size below 1 nm, and importantly large micropore volume (0.95 cm3 g?1). The remarkably high CO2 adsorption capacities of 6.52 and 19.32 mmol g?1 were achieved with this sample at 0 °C (273 K) and two pressures, 1 bar and 20 bar, respectively. Furthermore, this sample also exhibits excellent stability during cyclic operations and good separation selectivity for CO2 over N2.  相似文献   

19.
The post‐synthesis chemical modification of various porous carbon materials with unsaturated organic compounds is reported. By this method, amine, alcohol, carboxylate, and sulfonic acid functional groups can be easily incorporated into the materials. Different carbonaceous materials with surface areas ranging from 240 to 1500 m2 g?1 and pore sizes between 3.0 and 7.0 nm have been studied. The resulting materials were analyzed by elemental analysis, nitrogen sorption, FTIR spectroscopy, zeta‐potential measurements, thermogravimetric analysis, photoelectron spectroscopy, and small‐angle X‐ray scattering. These analyses indicated that the degree of functionalization is dependent on the nature of the dienophile (reactivity, steric hindrance) and the porosity of the carbon material. As possible applications, the functionalized carbonaceous materials were studied as catalysts in the Knoevenagel reaction and as adsorbents for Pb2+ from aqueous solution.  相似文献   

20.
This research presents a simple and efficient method to synthesize porous nitrogen‐doped carbon microspheres (PNCM) by the carbonization of microporous poly(terephthalaldehyde‐pyrrole) organic frameworks (PtpOF). The common KOH activation process is used to tune the porous texture of the PNCM and produce an activated‐PNCM (A‐PNCM). The PNCM and A‐PNCM with specific surface area of 921 and 1303 m2 g?1, respectively, are demonstrated as promising candidates for EDLCs. At a current density of 0.5 A g?1, the specific capacitances of the PNCM and A‐PNCM are 248 and 282 F g?1, respectively. At the relatively high current density of 20 A g?1, the capacitance remaining is 95 and 154 F g?1, respectively. Capacity retention of the A‐PNCM is more than 92 % after 10 000 charge/discharge cycles at a current density of 2 A g?1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号