首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report an aqueous‐phase synthetic route to copper nanoparticles (CuNPs) using a copper–surfactant complex and tests of their catalytic efficiency for a simple nitrophenol reduction reaction under atmospheric conditions. Highly stable, water‐dispersed CuNPs were obtained with the aid of polyacrylic acid (PAA), but not with other dispersants like surfactants or polymethacrylic acid (PMAA). The diameter of the CuNPs could be controlled in the range of approximately 30–85 nm by modifying the ratio of the metal precursor to PAA. The catalytic reduction of p‐nitrophenol to p‐aminophenol takes place at the surface of CuNPs at room temperature and was accurately monitored by UV/Vis spectroscopy. The catalytic efficiency was found to be remarkably high for these PAA‐capped CuNPs, given the fact that at the same time PAA is efficiently preventing their oxidation as well. The activity was found to increase as the size of the CuNPs decreased. It can therefore be concluded that the synthesized CuNPs are catalytically highly efficient in spite of the presence of a protective PAA coating, which provides them with a long shelf life and thereby enhances the application potential of these CuNPs.  相似文献   

2.
Oxidative polymerization of aniline, anthranilic acid, and aniline‐co‐anthranilic acid by potassium dichromate Cr(VI) as an oxidant in acidic medium was investigated. In this study, the polymerization process of aniline, o‐anthranilic acid as well as aniline/o‐anthranlic acid using K2Cr2O7 produced, coordinated Cr(III)/polyaniline (PANI), Cr(III)/polyanthranilic acid (PAA) and Cr(III)/poly aniline‐co‐anthranilic acid (PANAA). The mechanism of polymerization reaction in the presence of dichromate was hypothesized. The precursor chromium doped polymers were characterized by TGA, FT‐IR, UV‐visible, XRD analyses. Cr2O3 nanoparticles size were determined using TEM analysis. The calcinations process of synthesized chromium doped PANI, PAA and PANAA yields Cr2O3 nanoparticles 26%, 31%, and 34% wt. respectively. Rhombohedral phase of Cr2O3 particles in the range from 33 to 61 nm was produced from chromium/polyanthranilic acid (PAA) and chromium/poly(aniline‐co‐anthranilic acid) PANAA. UV‐ visible analysis showed that optical band gaps (Eg) of doped poly aniline and its derivatives are in the range from1.55 to 1.80 using Tacu's law. The band gap values reveal that the doped chromium emeraldine base can be used as semiconductor materials. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
The preparation of stable metal nanoparticles requires a strong interaction between the (organic) stabilizer and the metal surface that might alter the catalytic properties. This behavior has been described as “poisoning” since the stabilizer normally decreases the catalytic activity due to site blocking. Here we show a striking influence of the stabilizer on the selectivity in the hydrogenation of cinchonidine (CD) over poly(acrylic acid) (PAA)‐stabilized Pt nanoparticles with well‐defined shape distributions. In the hydrogenation of the heteroaromatic ring of cinchonidine in toluene, the diastereomeric excess of the (S)‐hexahydrocinchonidine increased upon increasing Pt{111}/Pt{100} ratio, but this distinct shape selectivity was observed only after the oxidative removal of PAA at 473 K. The use of the as‐prepared nanoparticles inverted the major diastereomer to R, and this isomer was formed also in acetic acid. This striking change in the diastereoselectivity indicates that poly(acrylic acid), which remains on the Pt surface after preparation, interacts with CD during hydrogenation almost as strongly as the solvent acetic acid. The PAA stabilizer plays a dual role: it allows one to control the size and shape of the nanoparticles during their synthesis, and it affects the rate and diastereoselectivity of the hydrogenation of CD probably through a “surface‐localized acidification”.  相似文献   

4.
An air‐stable, highly active and versatile method for C─N bond forming reactions is reported. Under mild conditions using a highly reusable support‐free Cu(II)–salen complex, structurally diverse N ‐aryl‐substituted compounds were obtained via direct C─N bond forming reaction of HN‐heterocycles with aryl iodides or three‐component C─N bond forming reaction of 2‐bromobenzaldehyde, aniline derivatives and sodium azide in good to excellent yields. C─N bond forming reaction for benzimidazole derivatives was also performed in the presence of the catalyst under ambient conditions. A series of hybrid benzimidazoles bearing morpholine, tetrazole and quinoxaline backbones were produced using this method. All reactions were performed in short times under air. The Cu(II) catalyst could be reused up to eight times in the direct cross‐coupling reaction of 9H –carbazole with iodobenzene without any decrease in its catalytic activity.  相似文献   

5.
pt‐Butyl calix[4]arene diol (distal cone) (1) was grafted with poly (acrylic acid) (PAA) to obtain hydrophobically modified PAA (PAA‐C) bearing calixarene moieties. The grafting method includes the direct esterification reaction of PAA with calixarene diol 1 which was carried out in a system of tosyl chloride (TsCl), pyridine (Py), and N,N‐dimethylformamide (DMF). The grafting yield was studied using different molar ratios of PAA to calix[4]arene diol 1, temperature, and reaction time. The chemical composition of the PAA‐C was studied by IR and 1H NMR spectroscopy. Also, the morphology of PAA‐C was evaluated by scanning electron microscopy. The PAA‐C had different solubility and thermal properties. The extraction ability measurements of modified PAA toward alkali metal cations (Na+, K+, Cs+) and Ag+ showed a remarkable efficiency and selectivity of PAA‐C toward Na+. The main goal of this work was to design hydrophobically modified PAA with binding ability that is suitable for ion selective membranes and chemical sensor devices such as ion‐specific electrodes, semipermeable membranes, and quartz microbalances. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
Summary: Novel non‐covalently connected water‐soluble nanoparticles that contain poly(fluorene‐co‐phenylene) with hydroxy‐capped alkoxy side chains (PF3BOH) and poly(acrylic acid) (PAA) have been obtained and characterized. With different proportions of PF3BOH and PAA, the shape and size of the nanoparticles can be regulated. The nanoparticles are quite stable in water with no precipitate being observed after weeks. Transmission electron microscopy and dynamic laser light scattering are used to confirm the morphology of the PF3BOH/PAA nanoparticles. Their optical properties have been investigated and show similar optoelectronic properties to a PF3BOH solid film although they do not undergo aggregation.

TEM images of the nanoparticles obtained upon varying the PAA/PF3BOH content.  相似文献   


7.
Fe3O4 nanoparticles were indirectly implanted onto functionalized multi‐walled carbon nanotubes (MWCNTs) leading to a nanocomposite with stronger magnetic performance. Poly(acrylic acid) (PAA) oligomer was first reacted with hydroxyl‐functionalized MWCNTs (MWCNTs‐OH) forming PAA‐grafted MWCNTs (PAA‐g‐MWCNTs). Subsequently, Fe3O4 nanoparticles were attached onto the surface of PAA‐g‐MWCNTs through an amidation reaction between the amino groups on the surface of Fe3O4 nanoparticles and the carboxyl groups of PAA. Fourier transform infrared spectra confirmed that the Fe3O4 nanoparticles and PAA‐g‐MWCNTs were indeed chemically linked. The morphology of the nanocomposites was characterized using transmission electron microscope (TEM). The surface and bulk structure of the nanocomposites were examined using X‐ray diffraction, X‐ray photoelectron spectrometer (XPS), and thermogravimetric analysis (TGA). The magnetic performance was characterized by vibrating sample magnetometer (VSM) and the magnetic saturation value of the magnetic nanocomposites was 47 emu g?1. The resulting products could be separated from deionized water under an external magnetic field within about 15 s. Finally, the magnetorheological (MR) performances of the synthesized magnetic nanocomposites and pure Fe3O4 nanoparticles were examined using a rotational rheometer. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

8.
A new approach was developed for the magnetic separation of copper(II) ions with easy operation and high efficiency. p‐Mercaptobenzoic acid served as the modified tag of Fe2O3@Au nanoparticles both for the chelation ligand and Raman reporter. Through the chelation between the copper(II) ions and carboxyl groups on the gold shell, the Fe2O3@Au nanoparticles aggregated to form networks that were enriched and separated from the solution by a magnet. A significant decrease in the concentration of copper(II) ions in the supernatant solution was observed. An extremely sensitive method based on surface‐enhanced Raman spectroscopy was employed to detect free copper(II) ions that remained after the magnetic separation, and thus to evaluate the separation efficiency. The results indicated the intensities of the surface‐enhanced Raman spectroscopy bands from p‐mercaptobenzoic acid were dependent on the concentration of copper(II) ions, and the concentration was decreased by several orders of magnitude after the magnetic separation. The present protocol effectively decreased the total amount of heavy metal ions in the solution. This approach opens a potential application in the magnetic separation and highly sensitive detection of heavy metal ions.  相似文献   

9.
A series of perfluorocyclobutyl (PFCB) aryl ether‐based amphiphilic diblock copolymers containing hydrophilic poly(acrylic acid) (PAA) and fluorophilic poly(p‐(2‐(p‐tolyloxy)perfluorocyclobutoxy)phenyl methacrylate) segments were synthesized via successive atom transfer radical polymerization (ATRP). 2‐MBP‐initiated and CuBr/N,N,N,N,N″‐pentamethyldiethylenetriamine‐catalyzed ATRP homopolymerization of the PFCB‐containing methacrylate monomer, p‐(2‐(p‐tolyloxy)perfluorocyclobutoxy)phenyl methacrylate, can be performed in a controlled mode as confirmed by the fact that the number‐average molecular weights (Mn) increased linearly with the conversions of the monomer while the polydispersity indices kept below 1.38. The block copolymers with narrow molecular weight distributions (Mw/Mn ≤ 1.36) were synthesized by ATRP using Br‐end‐functionalized poly(tert‐butyl acrylate) (PtBA) as macroinitiator followed by the acidolysis of hydrophobic PtBA block into hydrophilic PAA segment. The critical micelle concentrations of the amphiphilic diblock copolymers in different surroundings were determined by fluorescence spectroscopy using N‐phenyl‐1‐naphthylamine as probe. The morphology and size of the micelles were investigated by transmission electron microscopy and dynamic laser light scattering, respectively. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

10.
Silver nanoparticles were prepared by the reduction of AgNO(3) with aniline in dilute aqueous solutions containing cetyltrimethlyammonium bromide, CTAB. Nanoparticles growth was assessed by UV-vis spectroscopy and the average particle size and the size distribution were determined from transmission electron microscopy, TEM. As the reaction proceeds, a typical plasmon absorption band at 390-450nm appears for the silver nanoparticles and the intensities increase with the time. Effects of [aniline], [CTAB] and [Ag(+)] on the particle formation rate were analyzed. The apparent rate constants for the formation of silver nanoparticles first increased until it reached a maximum then decreased with [aniline]. TEM photographs indicate that the silver sol consist of well dispersed agglomerates of spherical shape nanoparticles with particle size range from 10 to 30nm. Aniline concentrations have no significant effect on the shape, size and the size distribution of Ag-nanoparticles. Aniline acts as a reducing as well as adsorbing agent in the preparation of roughly spherical, agglomerated and face-centered-cubic silver nanoparticles.  相似文献   

11.
Cu nanoparticles surface‐capped by alkanethiols were synthesized using ligand exchange method in a two‐phase system. The effects of synthetic conditions, including the pH value of CuSO4 solution, the ratio of cetyltrimethyl ammonium bromide to CuSO4, and reaction temperature, on the size and shape of as‐synthesized Cu nanoparticles were investigated. As‐synthesized Cu nanoparticles surface‐capped by alkanethiols with different chain lengths (CxS‐Cu) were characterized by means of X‐ray diffraction, transmission electron microscopy, Fourier transform infrared spectrometry, and ultraviolet–visible light spectrometry. The tribological behavior of CxS‐Cu as an additive in liquid paraffin was evaluated with a four‐ball machine. Results indicate that cetyltrimethyl ammonium bromide plays an important role in controlling the dispersion of Cu nanoparticles before adding modifier octanethiol into the reaction solution. CxS‐Cu nanoparticles as additive in liquid paraffin possess excellent antiwear and friction‐reduction performance because of the deposition of nano‐Cu with low melting point on worn steel surface leading to the formation of a self‐repairing protective layer thereon. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
Well‐dispersed carbon‐coated or nitrogen‐doped carbon‐coated copper‐iron alloy nanoparticles (FeCu@C or FeCu@C?N) in carbon‐based supports are obtained using a bimetallic metal‐organic framework (Cu/Fe‐MOF‐74) or a mixture of Cu/Fe‐MOF‐74 and melamine as sacrificial templates and an active‐component precursor by using a pyrolysis method. The investigation results attest formation of Cu?Fe alloy nanoparticles. The obtained FeCu@C catalyst exhibits a catalytic activity with a half‐wave potential of 0.83 V for oxygen reduction reaction (ORR) in alkaline medium, comparable to that on commercial Pt/C catalyst (0.84 V). The catalytic activity of FeCu@C?N for ORR (Ehalf‐wave=0.87 V) outshines all reported analogues. The excellent performance of FeCu@C?N should be attributed to a change in the energy of the d‐band center of Cu resulting from the formation of the copper–iron alloy, the interaction between alloy nanoparticles and supports and N‐doping in the carbon matrix. Moreover, FeCu@C and FeCu@C?N show better electrochemical stability and methanol tolerance than commercial Pt/C and are expected to be widely used in practical applications.  相似文献   

13.
Ultrasonically assisted in situ emulsion polymerization was used to prepare electrically conducting copolymer poly(aniline‐co‐p‐phenylenediamine) [poly(Ani‐co‐pPD)] and silica (SiO2) nancomposites. This approach can solve problems in the dispersion and stabilization of SiO2 nanoparticles in the copolymer matrix. It was found that the aggregation of SiO2 nanoparticles could be reduced under ultrasonic irradiation. Scanning transmission electron microscopy (STEM) confirmed that the resulting poly(Ani‐co‐pPD)/SiO2 nanocomposite particles were spherical in shape, in which SiO2 nanoparticles were well dispersed. The comonomer molecules were absorbed on the surface of SiO2 particles and then polymerized to form core–shell nanocomposite. The incorporation of SiO2 in the nanocomposite was supported by Fourier transform infrared spectroscopy (FT‐IR). UV‐visible spectra of the diluted colloid dispersion of nanocomposite particles were similar to those of the neat copolymer. Conductivity of nanocomposites was higher than the value obtained for the neat copolymer. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
A surface plasmon resonance (SPR) sensor was applied to analyses of some amine compounds (n-butylamine, isobutylamine, aniline, and N,N-dimethylaniline) by using a polymer film and an acid-base reaction in it. Poly(acrylamide) (PAA) was adopted as the polymer film and was immobilized on an Au film to prepare a sensor chip. Pivalic acid was entered into the PAA film as an acid. The PAA film with a thickness of 50 nm gave the highest sensitivity to the SPR sensor. Although water was better concerning the sensitivity for the SPR sensor as the solvent, ethanol was adopted because it dissolves well all of the amine compounds used. The Au film coated with the PAA film gave higher sensitivity for analyses of n-butylamine and isobutylamine, and lower sensitivity for analyses of aniline and N,N-dimethylaniline than an Au film without the PAA film. The PAA film containing pivalic acid gave 4-5 orders of magnitude higher sensitivity to the SPR sensor for analyses of all the amine compounds due to the reaction between pivalic acid and these amine compounds.  相似文献   

15.
Semi‐empirical quantum chemical study of the oxidative polymerization of aniline with ammonium peroxydisulfate, in aqueous solutions without added acid, has been based on the MNDO‐PM3 computations of thermodynamic, redox, and acid–base properties of reactive species and the intermediates, combined with the MM2 molecular mechanics force‐field method and conductor‐like screening model of solvation. The main reaction routes of aniline tetramerization are proposed. The regioselectivity of the formation of aniline tetramers by redox and electrophilic aromatic substitution reactions is analyzed. It was proved that the linear N? C4 coupled tetra‐aniline is formed as a dominant product by three different pathways: comproportionation redox reaction between N‐phenyl‐1,4‐benzoquinonediimine and 4‐aminodiphenylamine, the one‐electron oxidation of aniline with its half‐oxidized N? C4 coupled trimer, and the electrophilic aromatic substitution reaction of aniline with fully oxidized N? C4 coupled trianiline nitrenium cation. The electrophilic aromatic substitution reaction of the N? C4 coupled aniline trimer with aniline nitrenium cation, as well as the oxidation of aniline with half‐oxidized branched trimer, lead to the branched aniline tetramers. The competing character of different tetramerization routes is highlighted. The oxidative intramolecular cyclization of branched oligoanilines and polyaniline, leading to the generation of substituted phenazine units, has been predicted to accompany the classical routes of the polymerization of aniline. Various molecular (branched vs. linear) oligomeric structures produced at different level of acidity during the course of polymerization and their impact on the formation of supramolecular structures of conducting polyaniline (nanorods and nanotubes vs. granular morphology), are discussed. © 2007 Wiley Periodicals, Inc. Int J Quantum Chem, 2008  相似文献   

16.
In this research, thermo‐ and pH‐responsive nanoparticles with an average diameter of about 50–200 nm were synthesized via the surfactant‐free emulsion polymerization. The thermal/pH dual responsive properties of these nanoparticles were designed by the addition of a pH sensitive monomer, acrylic acid (AA), to be copolymerized with N‐isopropylacrylamide (NIPAAm) in a chitosan (CS) solution. The molar ratio of CS/AA/NIPAAm in the feed was changed to investigate its effect on structure, morphology, thermal‐ and pH‐responsive properties of the nanoparticles. It was found that CS‐PAA‐PNIPAAm nanoparticles could be well dispersed in the aqueous solution and carried positive charges on the surface. The addition of thermal‐sensitive NIPAAm monomer affected the polymerization mechanism and interactions between CS and AA. The particle size of the nanoparticles was found to be varied with the composition of NIPAAm monomer in the feed. The synthesized nanoparticles exhibited stimuli‐responsive properties, and their mean diameter thus could be manipulated by changing pH value and temperature of the environment. The nanoparticles showed a continuous release of the encapsulated doxycycline hyclate up to 10 days during an in vitro release experiment. The environmentally responsive nanoparticles are expected to be used in many fields such as drug delivery system. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2798–2810, 2009  相似文献   

17.
In this paper, highly dispersive nanosized copper particles with a mean particle size of less than 6 nm are prepared by an environmentally friendly chemical reduction method. Non-toxic L-ascorbic acid acts as both reducing agent and antioxidant in ethylene glycol in the absence of any other capping agent. Transmission electron microscopy (TEM) is used to characterize the size and morphology of Cu nanoparticles. The results of UV-Vis spectroscopy (UV-Vis), energy dispersive spectroscopy (EDS) and high resolution TEM (HRTEM) illustrate that the resultant product is pure Cu nanocrystals. The size of Cu nanoparticles is remarkably impacted by the order of reagent addition, and the investigation reveals the reaction procedure of Cu^2+ ions and L-ascorbic acid.  相似文献   

18.
Polyamidation with phenyl dichlorophosphite (PDCP) as a new condensing agent was studied. A model reaction of benzoic acid and aniline with PDCP through a change in their addition order revealed that PDCP reacted with aniline more favorably than it did with the acid, and it could activate about 2 mol of aniline to produce benzanilide in a nearly quantitative yield. A preferential reaction with aniline occurred even in the presence of the acid. The reaction was applied to the polyamidation of dicarboxylic acids and diamines or of p‐aminobenzoic acid (PABA) with 0.6 equiv of PDCP with respect to the amino groups in pyridine/N‐methyl‐2‐pyrrolidone in the presence of LiCl. Polyterephthalamides and polyisophthalamides with moderate inherent viscosity values were produced. The polycondensation of PABA was significantly promoted by the slow addition of PDCP over a period of 20–40 min and the presence of LiCl, producing poly(p‐benzamide) with inherent viscosity values of about 2.4. Unsubstituted PDCP and PDCPs with an electron‐donating methoxy substituent afforded better results. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4126–4131, 2004  相似文献   

19.
A series of granulated semi‐interpenetrating polymer network (semi‐IPN) superabsorbent hydrogels composed of chitosan‐g‐poly(acrylic acid) (CTS‐g‐PAA) and poly(vinyl alcohol) (PVA) were prepared by solution polymerization using ammonium persulfate (APS) as an initiator and N,N′‐methylenebisacrylamide (MBA) as a crosslinker. The effects of reaction conditions such as the concentration of MBA, the weight ratio of AA to CTS, and the content of PVA on water absorbency were investigated. Infrared (IR) spectra and differential scanning calorimetry (DSC) analyses confirmed that AA had been grafted onto CTS backbone, and PVA semi‐interpenetrating into CTS‐g‐PAA networks. SEM analyses indicated that CTS‐g‐PAA/PVA has improved porous surface and PVA was uniformly dispersed in CTS‐g‐PAA network. The semi‐IPN hydrogel containing 10 wt% PVA shows the highest water absorbency of 353 and 53 g g?1 in distilled water and 0.9 wt% NaCl solution, respectively. Swelling behaviors revealed that the introduction of PVA could improve the swelling rate and enhance the pH stability of the superabsorbent hydrogel. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
Superparamagnetic iron oxide nanoparticles with narrow size distributions were successfully prepared in large scale by a facile one‐pot synthetic method in the presence of hydrophilic polymers, such as polyethylene glycol diacid (HOOC‐PEG‐COOH) and poly(acrylic acid) (PAA). The as‐prepared products were investigated in detail by powder X‐ray diffraction (XRD), thermogravimetric analyses (TGA), transmission electron microscopy (TEM), high‐resolution transmission electron microscopy (HRTEM), dynamic light scattering (DLS), and vibrating sample magnetometer (VSM). The interaction between polymers and iron oxide nanoparticles was investigated using Fourier transform infrared spectrometry (FT‐IR). The results show that polymers can be attached onto the surface of iron oxide nanoparticle by bridging coordination and monodentate fashion, respectively. The interaction affects iron oxide nanoparticle properties significantly, such as XRD diffraction intensity, hydrodynamic diameter, isoelectric point, and saturation magnetization. Furthermore, the results of in vitro experiments indicated that iron oxide‐PEG‐COOH nanoparticle is more cytotoxic than iron oxide‐PAA nanoparticle due to different coordinating modes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号