首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 808 毫秒
1.
Metabolomic results on human blood plasma largely depend on the sample preparation protocols employed for protein precipitation and metabolite extraction. Five different extraction methods were examined, which can be grouped into two categories, liquid-liquid extraction and protein precipitation methods, including long-standing protocols such as the Folch extraction and Bligh-Dyer extraction in comparison to modern methods such as the Matyash protocol and two global metabolite extraction methods. Extracts were subjected to analysis of blood plasma lipids and primary metabolites by using chip-based direct infusion nanoelectrospray tandem mass spectrometry and gas chromatography coupled to time-of-flight mass spectrometry, respectively. Optimal extraction schemes were evaluated based on the number of identified metabolites, extraction efficiency, compound diversity, reproducibility, and convenience for high-throughput sample preparations. Results showed that Folch and Matyash methods were equally valid and robust for lipidomic assessments while primary metabolites were better assessed by the protein precipitation methods with organic solvent mixtures. Graphical Abstract
Schematic workflow of five extraction methods and subsequent mass spectrometry analysis using GC-TOF MS and nanoelectrospray direct-infusion ion trap MS/MS?  相似文献   

2.
3.
A new ambient ionization method allowing the direct chemical analysis of living human body by mass spectrometry (MS) was developed. This MS method, namely Megavolt Electrostatic Ionization Mass Spectrometry, is based on electrostatic charging of a living individual to megavolt (MV) potential, illicit drugs, and explosives on skin/glove, flammable solvent on cloth/tissue paper, and volatile food substances in breath were readily ionized and detected by a mass spectrometer. Figure
?  相似文献   

4.
In this study, a liquid chromatography mass spectrometry (LC/MS)-based metabolomics protocol was optimized for quenching, harvesting, and extraction of metabolites from the human pancreatic cancer cell line Panc-1. Trypsin/ethylenediaminetetraacetic acid (EDTA) treatment and cell scraping in water were compared for sample harvesting. Four different extraction methods were compared to investigate the efficiency of intracellular metabolite extraction, including pure acetonitrile, methanol, methanol/chloroform/H2O, and methanol/chloroform/acetonitrile. The separation efficiencies of hydrophilic interaction chromatography (HILIC) and reversed-phase liquid chromatography (RPLC) with UPLC-QTOF-MS were also evaluated. Global metabolomics profiles were compared; the number of total detected features and the recovery and relative extraction efficiencies of target metabolites were assessed. Trypsin/EDTA treatment caused substantial metabolite leakage proving it inadequate for metabolomics studies. Direct scraping after flash quenching with liquid nitrogen was chosen to harvest Panc-1 cells which allowed for samples to be stored before extraction. Methanol/chloroform/H2O was chosen as the optimal extraction solvent to recover the highest number of intracellular features with the best reproducibility. HILIC had better resolution for intracellular metabolites of Panc-1 cells. This optimized method therefore provides high sensitivity and reproducibility for a variety of cellular metabolites and can be applicable to further LC/MS-based global metabolomics study on Panc-1 cell lines and possibly other cancer cell lines with similar chemical and physical properties.
Figure
Optimized harvesting, extraction and analytical protocols for cell metabolomics analysis.  相似文献   

5.
Atmospheric ionization methods are ideally suited for prolonged MS/MS analysis. Data-independent MS/MS is a complementary technique for analysis of biological samples as compared to data-dependent analysis. Here, we pair data-independent MS/MS with the ambient ionization method nanospray desorption electrospray ionization (nanoDESI) for untargeted analysis of bacterial metabolites. Proof-of-principle data and analysis are illustrated by sampling Bacillus subtilis and Pseudomonas aeruginosa directly from Petri dishes. We found that this technique enables facile comparisons between strains via MS and MS/MS plots which can be translated to chemically informative molecular maps through MS/MS networking. The development of novel techniques to characterize microbial metabolites allows rapid and efficient analysis of metabolic exchange factors. This is motivated by our desire to develop novel techniques to explore the role of interspecies interactions in the environment, health, and disease. This is a contribution to honor Professor Catherine C. Fenselau in receiving the prestigious ASMS Award for a Distinguished Contribution in Mass Spectrometry for her pioneering work on microbial mass spectrometry.
Figure
?  相似文献   

6.
Instrument parameter values for a quadrupole Orbitrap mass spectrometer were optimized for performing global proteomic analyses. Fourteen factors were evaluated for their influence on data-dependent acquisition with an emphasis on both the rate of sequencing and spectral quality by maximizing two individually tested response variables (unique peptides and protein groups). Of the 14 factors, 12 factors were assigned significant contrast values (P?<?0.05) for both response variables. Fundamentally, when optimizing parameters, a balance between spectral quality and duty cycle needs to be reached in order to maximize proteome coverage. This is especially true when using a data-dependent approach for sequencing complex proteomes. For example, maximum ion injection time, automatic gain control settings, and minimum threshold settings for triggering MS/MS isolation and activation all heavily influence ion signal, the number of spectra collected, and spectral quality. To better assess the effect these parameters have on data acquisition, all MS/MS data were parsed according to ion abundance by calculating the percent of the AGC target reached for each MS/MS event and then compared with successful peptide-spectrum matches. This proved to be an effective approach for understanding the effect of ion abundance on successful peptide-spectrum matches and establishing minimum ion abundance thresholds for triggering MS/MS isolation and activation.
Figure
?  相似文献   

7.
8.
High performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS) has been successfully applied to cannabis plant extracts in order to identify cannabinoid compounds after their quantitative isolation by means of supercritical fluid extraction (SFE). MS conditions were optimized by means of a central composite design (CCD) approach, and the analysis method was fully validated. Six major cannabinoids [tetrahydrocannabinolic acid (THCA), tetrahydrocannabinol (THC), cannabidiol (CBD), tetrahydrocannabivarin (THCV), cannabigerol (CBG), and cannabinol (CBN)] were quantified (RSD < 10%), and seven more cannabinoids were identified and verified by means of a liquid chromatograph coupled to a quadrupole-time-of-flight (Q-ToF) detector. Finally, based on the distribution of the analyzed cannabinoids in 30 Cannabis sativa L. plant varieties and the principal component analysis (PCA) of the resulting data, a clear difference was observed between outdoor and indoor grown plants, which was attributed to a higher concentration of THC, CBN, and CBD in outdoor grown plants. Graphical Abstract
Representative figure of the identification and quantification process of cannabinoids  相似文献   

9.
Although Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) remains the mass spectrometry platform that provides the highest levels of performance for mass accuracy and resolving power, there is room for improvement in analyzer cell design as the ideal quadrupolar trapping potential has yet to be generated for a broadband MS experiment. To this end, analyzer cell designs have improved since the field’s inception, yet few research groups participate in this area because of the high cost of instrumentation efforts. As a step towards reducing this barrier to participation and allowing for more designs to be physically tested, we introduce a method of FT-ICR analyzer cell prototyping utilizing printed circuit boards at modest vacuum conditions. This method allows for inexpensive devices to be readily fabricated and tested over short intervals and should open the field to laboratories lacking or unable to access high performance machine shop facilities because of the required financial investment. Figure
?  相似文献   

10.
Currently, there is no cure for Alzheimer’s disease and early diagnosis is very difficult, since no biomarkers have been established with the necessary reliability and specificity. For the discovery of new biomarkers, the application of omics is emerging, especially metabolomics based on the use of mass spectrometry. In this work, an analytical approach based on direct infusion electrospray mass spectrometry was applied for the first time to blood serum samples in order to elucidate discriminant metabolites. Complementary methodologies of extraction and mass spectrometry analysis were employed for comprehensive metabolic fingerprinting. Finally, the application of multivariate statistical tools allowed us to discriminate Alzheimer patients and healthy controls, and identify some compounds as potential markers of disease. This approach provided a global vision of disease, given that some important metabolic pathways could be studied, such as membrane destabilization processes, oxidative stress, hypometabolism, or neurotransmission alterations. Most remarkable results are the high levels of phospholipids containing saturated fatty acids, respectively, polyunsaturated ones and the high concentration of whole free fatty acids in Alzheimer’s serum samples. Thus, these results represent an interesting approximation to understand the pathogenesis of disease and the identification of potential biomarkers. Graphical Abstract
?  相似文献   

11.
Applying Hadamard transform multiplexing to ion mobility separations (IMS) can significantly improve the signal-to-noise ratio and throughput for IMS coupled mass spectrometry (MS) measurements by increasing the ion utilization efficiency. However, it has been determined that fluctuations in ion intensity as well as spatial shifts in the multiplexed data lower the signal-to-noise ratios and appear as noise in downstream processing of the data. To address this problem, we have developed a novel algorithm that discovers and eliminates data artifacts. The algorithm employs an analytical approach to identify and remove artifacts from the data, decreasing the likelihood of false identifications in subsequent data processing. Following application of the algorithm, IMS-MS measurement sensitivity is greatly increased and artifacts that previously limited the utility of applying the Hadamard transform to IMS are avoided. Figure
?  相似文献   

12.
The study presents for the first time a systematic investigation of matrix effects in the LC-MS/MS analysis of ergot alkaloids in cereals. In order to assure the accuracy of the results, several approaches to minimize/eliminate matrix effects were investigated including variation of ionization techniques, chromatography and sample preparation on different grain types and grain varieties. It was revealed that the use of UPLC and careful choice of sample preparation might reduce signal suppression/enhancement. In general, ergometrine was found to be the most susceptible among the ergot alkaloids studied, but none of the used approaches suggested a total elimination of matrix effects; only less than half of its MS signal could be recovered. The late-eluting compounds were less affected by matrix components in all conditions tested. Further, the robustness of the applied LC-MS method was checked by means of a fractional factorial design. The results indicate that small changes to the sample preparation parameters, namely pH and concentration of extraction buffer, shaking time, drying temperature and extraction volumes, did not significantly (α?=?0.05) affect the recoveries of ergot alkaloids.
Figure
SSE (%) applying different sample preparation procedures  相似文献   

13.
We present a microfluidic device, which enables single cells to be reliably trapped and cultivated while simultaneously being monitored by means of multifrequency electrical impedance spectroscopy (EIS) in the frequency range of 10 kHz–10 MHz. Polystyrene beads were employed to characterize the EIS performance inside the microfluidic device. The results demonstrate that EIS yields a low coefficient of variation in measuring the diameters of captured beads (~0.13 %). Budding yeast, Saccharomyces cerevisiae, was afterwards used as model organism. Single yeast cells were immobilized and measured by means of EIS. The bud growth was monitored through EIS at a temporal resolution of 1 min. The size increment of the bud, which is difficult to determine optically within a short time period, can be clearly detected through EIS signals. The impedance measurements also reflect the changes in position or motion of single yeast cells in the trap. By analyzing the multifrequency EIS data, cell motion could be qualitatively discerned from bud growth. The results demonstrate that single-cell EIS can be used to monitor cell growth, while also detecting potential cell motion in real-time and label-free approach, and that EIS constitutes a sensitive tool for dynamic single-cell analysis. Figure
?  相似文献   

14.
The most common data collection in shotgun proteomics is via data-dependent acquisition (DDA), a process driven by an automated instrument control routine that directs MS/MS acquisition from the highest abundant signals to the lowest. An alternative to DDA is data-independent acquisition (DIA), a process in which a specified range in m/z is fragmented without regard to prioritization of a precursor ion or its relative abundance in the mass spectrum, thus potentially offering a more comprehensive analysis of peptides than DDA. In this work, we evaluate both DDA and DIA on three different linear ion trap instruments: an LTQ, an LTQ modified with an electrodynamic ion funnel, and an LTQ Velos. These instruments represent both older (LTQ) and newer (LTQ Velos) ion trap designs (i.e., linear versus dual ion traps, respectively), and allow direct comparison of peptide identifications using both DDA and DIA analysis. Further, as the LTQ Velos has an enhanced “S-lens” ion guide to improve ion flux, we found it logical to determine if the former LTQ model could be leveraged by improving sensitivity by modifying with an electrodynamic ion guide of significantly different design to the S-lens. We find that the ion funnel enabled LTQ identifies more proteins in the insoluble fraction of a yeast lysate than the other two instruments in DIA mode, whereas the faster scanning LTQ Velos performs better in DDA mode. We explore reasons for these results, including differences in scan speed, source ion optics, and linear ion trap design. Graphical Abstract
?  相似文献   

15.
Liquid chromatography negative ion electrospray ionisation tandem mass spectrometry has been used for characterisation of naturally occurring prenylated fungal metabolites and synthetic derivatives. The fragmentation studies allow an elucidation of the decomposition pathways for these compounds. It could be shown, that the prenyl side chain is degraded by successive radical losses of C5 units. Both the benzoquinones and the phenolic derivatives display significant key ions comprising the aromatic ring. In some cases, the formation of significant oxygen-free key ions could be evidenced by high-resolution MS/MS measurements. Furthermore, the different types of basic skeletons, benzoquinones and phenol type as well as cyclic prenylated compounds, can be differentiated by their MS/MS behaviour.
Figure
Fruiting bodies of Suillus bovinus, the structure of boviquinone-4 and its negative ion MS2 spectrum  相似文献   

16.
In the present work, direct analysis of real time ionization combined with multi-stage tandem mass spectrometry (DART-MSn) was used to investigate the metabolic profile of aconite alkaloids in rat intestinal bacteria. A total of 36 metabolites from three aconite alkaloids were identified by using DART-MSn, and the feasibility of quantitative analysis of these analytes was examined. Key parameters of the DART ion source, such as helium gas temperature and pressure, the source-to-MS distance, and the speed of the autosampler, were optimized to achieve high sensitivity, enhance reproducibility, and reduce the occurrence of fragmentation. The instrument analysis time for one sample can be less than 10 s for this method. Compared with ESI-MS and UPLC-MS, the DART-MS is more efficient for directly detecting metabolic samples, and has the advantage of being a simple, high-speed, high-throughput method. Graphical Abstract
?  相似文献   

17.
Hydrogen sulfide has recently been identified as a biologically responsive species. The design and synthesis of fluorescence probes, which are constructed with Nile-red or Nile-blue fluorophores and a fluorescence-controllable dinitrophenyl group, for hydrogen sulfide are reported in this paper. The Nile-red–dinitrophenyl-ether-group-based probe (1a) is essentially non-fluorescent because of the inhibition of the photo-induced electron-transfer process; when the dinitrobenzene moiety is removed by nucleophilic substitution with the hydrosulfide anion, probe 1a is converted into hydroxy Nile red, eliciting a H2S-induced fluorescence turn-on signal. Furthermore, probe 1a has high selectivity and sensitivity for the hydrosulfide anion, and its potential for biological applications was confirmed by using it for real-time fluorescence imaging of hydrogen sulfide in live HeLa cells. The Nile-blue–dinitrobenzene-based probe (1b) has gradually diminishing brightness in the red-emission channel with increased hydrogen-sulfide concentration. Thus, this paper reports a comparative study of Nile-red and Nile-blue-based hydrogen-sulfide probes. Graphical Abstract
?  相似文献   

18.
Using quantum chemical calculations and infrared multiphoton dissociation (IRMPD) spectroscopy in the fingerprint and X-H stretching regions, we demonstrate here that the all-Ala b 6 fragment ion features a macrocyclic structure with C2 symmetry. For this structure, the ionizing proton is equally shared by the Ala(1) and Ala(4) amide oxygens in a Zundel-type symmetric (X…H+…X) H-bond. Figure
?  相似文献   

19.
Paul trap working in the second stability region has long been recognized as a possible approach for achieving high-resolution mass spectrometry (MS), which however is still far away from the experimental implementations because of the narrow working area and inefficient ion trapping. Full understanding of the ion motional behavior is helpful for solving the problem. In this article, the ion motion in a superimposed octopole field, which was characterized by the nonlinear Mathieu equation, was solved analytically using Poincare-Lighthill-Kuo (PLK) method. This method equivalently described the nonlinear disturbance by an effective quadrupole field with perturbed Mathieu parameters, a u and q u , which would bring huge convenience in the studies of nonlinear ion dynamics and was, therefore, used for rapid evaluation of the nonlinear effects of ion motion. Fourth-order Runge-Kutta method (4th R-K) indicated the error of PLK for characterizing the frequency shift of ion motion was within 15%. Figure
?  相似文献   

20.
This review covers three aspects of PCR-based microfluidic chip assays: sample preparation, target amplification, and product detection. We also discuss the challenges related to the miniaturization and integration of each assay and make a comparison between conventional and microfluidic schemes. In order to accomplish these essential assays without human intervention between individual steps, the micro-components for fluid manipulation become critical. We therefore summarize and discuss components such as microvalves (for fluid regulation), pumps (for fluid driving) and mixers (for blending fluids). By combining the above assays and microcomponents, DNA testing of multi-step bio-reactions in microfluidic chips may be achieved with minimal external control. The combination of assay schemes with the use of micro-components also leads to rapid methods for DNA testing via multi-step bioreactions. Contains 259 references. Figure
A graphical presentation of main PCR assays: DNA extraction from raw sample, target amplification by PCR and final product detection in conventional bench-top lab and miniaturized microfluidic chip.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号