首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In [1, 2], as a result of measurements of the hydraulic resistance and the friction in vertical tubes, a region of the flow with anomalously high values of these quantities was disclosed. The measured values of the resistance exceed by an order of magnitude values obtained using appropriate calculating methods. This region of the flow corresponds to bubble-type flow conditions with small reduced velocities of the liquid phase. The above communications do not give a clear explanation of the observed effect. The calculating method proposed in [2], which pretends to take this effect into consideration, does not describe the experimental results of other authors, for example, the results of [1]. In the present work the limits of the existence of this set of conditions were established, and the mean and pulsational characteristics of the friction were measured. It is shown that this region of anomalously high stresses corresponds to laminar and transitional Reynolds numbers. The results of measurement of the pulsations of the friction argue the absence of flow conditions of a gas-liquid mixture without pulsations, even with very small Reynolds numbers. The article proposes the possibility of the development of the “pseudoturbulent” transverse transfer of momentum due to the oscillating motion of the bubbles in the channel. A detailed explanation of an analogous effect in the hydrodynamics of blood was given by Regirer [3].  相似文献   

2.
We develop improved correlations for two-phase flow friction factor that consider the effect of the relative velocity of the phases, based on a database that includes 2560 gas–liquid flow experiments in horizontal pipes. The database includes a wide range of operational conditions and fluid properties for two-phase friction factor correlations. We classify the experiments by liquid holdup ranges to obtain composite analytical expressions for two-phase friction factor vs. the Reynolds number by fitting logistic dose curves to the experimental data with. We compute the liquid holdup values used to classify the experimental data using correlations proposed previously. The Reynolds number is based on the mixture velocity and the liquid kinematic viscosity. The Fanning friction factor for gas–liquid is defined in term of the mixture velocity and density. Additionally, we sort the experimental data by flow regime and obtain the two-phase friction factor improved correlations for dispersed bubble, slug, stratified and annular flow for different holdup ranges. We report error estimates for the predicted vs. measured friction factor together with standard deviation for each correlation. The accuracy of the correlations developed in this study is compared with that of other 21 correlations and models widely available in the specialized literature. Since different authors use different definitions for friction factors and Reynolds numbers, we present comparisons of the predicted pressure drop for each and every data point in the database. In most cases our correlations predict the pressure drop with much greater accuracy than those presented by previous authors.  相似文献   

3.
This paper investigates the layered structure of a turbulent plane wall jet at a distance from the nozzle exit. Based on the force balances in the mean momentum equation, the turbulent plane wall jet is divided into three regions: a boundary layer-like region (BLR) adjacent to the wall, a half free jet-like region (HJR) away from the wall, and a plug flow-like region (PFR) in between. In the PFR, the mean streamwise velocity is essentially the maximum velocity, and the simplified mean continuity and mean momentum equations result in a linear variation of the mean wall-normal velocity and Reynolds shear stress. In the HJR, as in a turbulent free jet, a proper scale for the mean wall-normal flow is the mean wall-normal velocity far from the wall and a proper scale for the Reynolds shear stress is the product of the maximum mean streamwise velocity and the velocity scale for the mean wall-normal flow. The BLR region can be divided into four sub-layers, similar to those in a canonical pressure-driven turbulent channel flow or shear-driven turbulent boundary layer flow. Building on the log-law for the mean streamwise velocity in the BLR, a new skin friction law is proposed for a turbulent wall jet. The new prediction agrees well with the correlation of Bradshaw and Gee (1960) over moderate Reynolds numbers, but gives larger skin frictions at higher Reynolds numbers.  相似文献   

4.
垂直湍流液-固流中大颗粒的相对速度   总被引:4,自引:0,他引:4  
通过量纲分析和实验测量,对于垂直、局部均匀的湍流稀态液一固流中,大颗粒的相对速度,建立了无量纲参数表达式.用分析和实验相结合的方法,确定了表达式中无量纲参数的幂次及有关系数.实验中用激光多普勒分相测量技术,分别测出流体和颗粒的时均速度结果表明,大颗粒相对速度强烈依赖于流体雷诺数,当流体雷诺数较高时,其幂次渐近于1.5。  相似文献   

5.
The dynamic subgrid-scale model is used in finite-difference computations of turbulent flow in a plane channel, for a range of Reynolds numbers (based on friction velocity and channel half-width) between 200 and 5000. Adoption of approximate wall boundary conditions allows the use of very coarse grids in all directions. The comparison of first- and second-order moments with the reference data is satisfactory, despite the mesh coarseness. Turbulent kinetic energy budgets also compare well with DNS data. Near the wall, the dynamic formulation gives improved results over the Smagorinsky model, as observed in previous simulation. In the core of the flow where, at high Reynolds number, the turbulent eddies obey inertial-range dynamics, the Smagorinsky and dynamic models give similar results. The behavior of the model, its implementation when approximate wall boundary conditions are used, and the effect of numerical resolution are discussed.Elias Balaras acknowledges the financial support provided by the European Economic Community under Grant ERBCHDICT930257. Ugo Piomelli was partially supported by the Office of Naval Research under Grant N0001491J1638.  相似文献   

6.
The influence of the inlet flow formation mode on the steady flow regime in a circular pipe has been investigated experimentally. For a given inlet flow formation mode the Reynolds number Re* at which the transition from laminar to turbulent steady flow occurred was determined. With decrease in the Reynolds number the difference between the resistance coefficients for laminar and turbulent flows decreases. At a Reynolds number approximately equal to 1000 the resistance coefficients calculated from the Hagen-Poiseuille formula for laminar steady flow and from the Prandtl formula for turbulent steady flow are equal. Therefore, we may assume that at Re > 1000 steady pipe flow can only be laminar and in this case it is meaningless to speak of a transition from one steady pipe flow regime to the other. The previously published results [1–9] show that the Reynolds number at which laminar goes over into turbulent steady flow decreases with increase in the intensity of the inlet pulsations. However, at the highest inlet pulsation intensities realized experimentally, turbulent flow was observed only at Reynolds numbers higher than a certain value, which in different experiments varied over the range 1900–2320 [10]. In spite of this scatter, it has been assumed that in the experiments a so-called lower critical Reynolds number was determined, such that at higher Reynolds numbers turbulent flow can be observed and at lower Reynolds numbers for any inlet perturbations only steady laminar flow can be realized. In contrast to the lower critical Reynolds number, the Re* values obtained in the present study, were determined for given (not arbitrary) inlet flow formation modes. In this study, it is experimentally shown that the Re* values depend not only on the pipe inlet pulsation intensity but also on the pulsation flow pattern. This result suggests that in the previous experiments the Re* values were determined and that their scatter is related with the different pulsation flow patterns at the pipe inlet. The experimental data so far obtained are insufficient either to determine the lower critical Reynolds number or even to assert that this number exists for a pipe at all.  相似文献   

7.
We describe large-eddy simulations (LES) of the flat-plate turbulent boundary layer in the presence of an adverse pressure gradient. The stretched-vortex subgrid-scale model is used in the domain of the flow coupled to a wall model that explicitly accounts for the presence of a finite pressure gradient. The LES are designed to match recent experiments conducted at the University of Melbourne wind tunnel where a plate section with zero pressure gradient is followed by section with constant adverse pressure gradient. First, LES are described at Reynolds numbers based on the local free-stream velocity and the local momentum thickness in the range 6560–13,900 chosen to match the experimental conditions. This is followed by a discussion of further LES at Reynolds numbers at approximately 10 times and 100 times these values, which are well out of range of present day direct numerical simulation and wall-resolved LES. For the lower Reynolds number runs, mean velocity profiles, one-point turbulent statistics of the velocity fluctuations, skin friction and the Clauser and acceleration parameters along the streamwise, adverse pressure-gradient domain are compared to the experimental measurements. For the full range of LES, the relationship of the skin-friction coefficient, in the form of the ratio of the local free-stream velocity to the local friction velocity, to both Reynolds number and the Clauser parameter is explored. At large Reynolds numbers, a region of collapse is found that is well described by a simple log-like empirical relationship over two orders of magnitude. This is expected to be useful for constant adverse-pressure gradient flows. It is concluded that the present adverse pressure gradient boundary layers are far from an equilibrium state.  相似文献   

8.
In flows with variable density, the turbulence energy equation contains a large number of correlations, about which little is at present known [1]. One of the least studied is the correlation between the pressure and the divergence of the velocity. Usually, this correlation is ignored [2, 3]. The aim of the present paper is to estimate the pulsations of the divergence of the velocity and the correlation with the pressure pulsations in a subsonic turbulent flow with variable density. Three cases are considered: 1) mixing of gases having different densities, 2) diffusion combustion, 3) combustion of a homogeneous mixture. It is assumed that the Mach number is small, the Reynolds number large, and the coefficients of molecular diffusion and thermal diffusivity equal; external forces are absent.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 4–11, May–June, 1979.  相似文献   

9.
The purpose of this investigation was to evaluate the performance of flush mounted hot-film sensors for mean wall shear stress measurement in turbulent flows of dilute drag reducing polymer solution. A series of pipe flow expriments were conducted over a range of Reynolds numbers and polymer solution concentrations to compare the level of skin friction drag reduction measured by hot-film sensors with values calculated from pipe pressure drop. It is shown that water calibrated hot-film sensors consistently underestimate the wall shear stress suggesting that Reynolds analogy is not valid in dilute polymer solutions. The Newtonian form of the relationship between the wall shear stress and the heat transfer remains valid in dilute polymer solutions. However, multiplicative and additive factors in the relationship are shown to increase linearly with the logarithm of the polymer concentration.  相似文献   

10.
Flow structure and distribution effects in gas-liquid mixture flows   总被引:1,自引:0,他引:1  
Air-water mixtures which are assumed to flow homogeneously in a pipe are usually described by a one-dimensional momentum balance. This allows definition of a friction factor in a manner similar to single phase flows. By defining a momentum flux distribution parameter, the momentum balance has been modified to correctly include the etfects of phase and velocity distributions and the effect of these on calculated friction factors has been investigated. Resistivity probes were used to measure void fraction and gas phase velocity distributions for selected vertical and horizontal flow conditions, and these were combined with static pressure measurements to calculate friction factors. For bubbly flows, the inclusion of these distribution effects did not substantially alter friction factor estimates which are approximately 10% above single phase values (for Reynolds numbers based on liquid viscosity).

Friction factor values are shown to be related to flow development with higher values associated with deveioping flows. In particular, high friction factors are associated with the need to break-up bubbles to an “equilibrium” size. In order to experimentally simulate fully developed vertical flows, the highly turbulent nozzle mixer is most suitable while the less turbulent wall-injection type seems appropriate for horizontal flows.  相似文献   


11.
In the present work we study potential applicability of large eddy simulation (LES) method for prediction of flatness and skewness of compressible magnetohydrodynamic (MHD) turbulence. The knowledge of these quantities characterizes non-Gaussian properties of turbulence and can be used for verification of hypothesis on Gaussianity for the turbulent flow under consideration. Prediction accuracy of these quantities by means of LES method directly determines efficiency of reconstruction of probability density function (PDF) that depends on used subgrid-scale (SGS) parameterizations. Applicability of LES approach for studying of PDF properties of turbulent compressible magnetic fluid flow is investigated and potential feasibilities of five SGS parameterizations by means of comparison with direct numerical simulation results are explored. The skewness and the flatness of the velocity and the magnetic field components under various hydrodynamic Reynolds numbers, sonic Mach numbers, and magnetic Reynolds numbers are studied. It is shown that various SGS closures demonstrate the best results depending on change of similarity numbers of turbulent MHD flow. The case without any subgrid modeling yields sufficiently good results as well. This indicates that the energy pile-up at the small scales that is characteristic for the model without any subgrid closure, does not significantly influence on determination of PDF. It is shown that, among the subgrid models, the best results for studying of the flatness and the skewness of velocity and magnetic field components are demonstrated by the Smagorinsky model for MHD turbulence and the model based on cross-helicity for MHD case. It is visible from the numerical results that the influence of a choice subgrid parametrization for the flatness and the skewness of velocity is more essential than for the same characteristics of magnetic field.  相似文献   

12.
The flow in the boundary layer in the vicinity of the stagnation point of a flat plate is examined. The outer stream consists of turbulent flow of the jet type, directed normally to the plate. Assumptions concerning the connection between the pulsations in velocity and temperature in the boundary layer and the average parameters chosen on the basis of experimental data made it possible to obtain an isomorphic solution of the boundary layer equations. Equations are obtained for the friction and heat transfer at the wall in the region of gradient flow taking into account the effect of the turbulence of the impinging stream. It is shown that the friction at the wall is insensitive to the turbulence of the impinging stream, while the heat transfer is significantly increased with an increase in the pulsations of the outer flow. These properties are confirmed by the results of experimental studies [1–4].Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 5, pp. 83–87, September–October, 1973.  相似文献   

13.
Flow in a circular pipe is investigated experimentally at Reynolds numbers higher than that at which the resistance coefficients calculated from the Blasius formula for laminar flow and from the Prandtl formula for turbulent flow are equal. The corresponding Reynolds number based on the mean-flow velocity and the pipe diameter is about 1000. The experiments were performed at a high level of inlet pulsations produced by feeding gas into the pipe through a hole with a diameter several times smaller than the pipe diameter. In our experiments the critical Reynolds number was determined as the value, independent of the distance from the inlet, at which the ratio of the axial to the mean-flow velocity as a function of the Reynolds number deviated from 2. At the maximum ratio of the pipe cross-sectional area to the area of the hole through which the gas entered the pipe, equal to 26, the critical Reynolds number was about 2300. After a fivefold increase in the hole area the critical Reynolds number increased by approximately 4%.At Reynolds numbers below 2000, after at a high level of the inlet pulsations an almost laminar flow had developed in the pipe, a perturbation was introduced by inserting a diametrically oriented cylindrical rod with a diameter 10–20 times smaller than the pipe diameter. In these experiments, at Reynolds numbers higher than 1000, at a distance from the rod equal to 50 pipe diameters the axial to mean-flow velocity ratio was less than 2, approaching this value again at large distances from the rod. The insertion of the rod led to a decrease in the critical Reynolds number by approximately 12%.  相似文献   

14.
后台阶分离流动中大涡结构演变的数值模拟   总被引:4,自引:0,他引:4  
本文对后台阶分离流动中涡结构的演变进行了大涡模拟,研究了流场结构的变化规律。详细讨论了随着雷诺数的增加流场结构的典型特征的变化规律,指出流场中的涡结构随着雷诺数的增大变得十分复杂和丰富,回流区的数目、大小及其出现的位置也显著地不同。这些结果与已有的一些实验值和流场显示结果是吻合的。在此基础上,进一步研究了高雷诺数时流场中大尺度涡结构的瞬时发展和演化过程,展示了其中大涡的产生、追随、吸引、合并和破碎等过程。对于高雷诺数情况,对大涡模拟得到的数值结果进行了统计,得到的时均速度分布以及台阶后方的回流区长度与现有的其他实验结果符合得很好。本研究是针对后台阶分离流动深入开展湍流控制以及两相流动研究的基础。  相似文献   

15.
The flow around a trailing edge is computed with a new hybrid method designed to more clearly separate the effects of total and sub-grid turbulent stress-modelling on the time-averaged and instantaneous velocity fields, and in turn, mean momentum and kinetic energy balances. These two velocity fields independently define Reynolds averaged and sub-grid-scale viscosities, and distinct stresses, at the same location. In particular, resolved eddies can emerge, or sweep in and out of the Reynolds averaged near wall layer, without being dampened by higher levels of the viscosity in this RANS dominated layer. The two-field hybrid model, first tested on channel flows, gives accurate predictions of mean velocities and stresses for different Reynolds numbers and coarse meshes. For the trailing edge flow the results of the hybrid model are close to the reference fine LES for mean velocity and turbulent content, whereas the DES-SST on the same coarse mesh gives too early separation.  相似文献   

16.
In the present work, turbulent flow in the annulus of a counter-rotating Taylor-Couette (CRTC) system is studied using large-eddy simulation. The numerical methodology employed is validated, for both the mean and second-order statistics, with the direct numerical simulation (DNS) data available in the literature, for a range of Reynolds numbers from 500 to 4000. Thereafter, turbulent flow occurring in this system at Reynolds numbers of 8000 and 16000 are studied, and the results obtained are analyzed using mean and second-order statistics, vortical structures, velocity vector plots and power energy spectra. Further, the spatio-temporal variation of azimuthal velocity, extracted near the inner cylinder, shows the existence of herringbone like patterns similar to that observed in the previous studies. The effect of eccentricity of the inner cylinder with respect to the outer cylinder is studied, on the turbulent flow in the CRTC system, for two different eccentricity ratios of 0.2 and 0.5 and for two different Reynolds numbers of 1500 and 4000. The results of the eccentric CRTC are analyzed using contours of pressure, mean and second-order statistics, velocity vectors, vortical structures, and turbulence anisotropy maps. It is observed from the eccentric CRTC simulations that the smaller-gap region seems to contain higher amplitude fluctuations and more vortical structures when compared with the larger-gap region. The mean turbulent kinetic energy contours do not change qualitatively with the Reynolds number, however, quantitatively a higher turbulent kinetic energy is observed in the higher Reynolds number case of 4000.  相似文献   

17.
The characteristic features of stroboscopic visualization and the possibilities of using this method for studying the flow of thin films are considered. The velocity field and the field of turbulent pulsations are studied experimentally for the film flow of liquids with Reynolds numbers of R = 40–1770.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 2, pp. 140–143, March–April, 1972.  相似文献   

18.
Effect of particle size on a two-phase turbulent jet   总被引:8,自引:0,他引:8  
The effect of particle size on two-phase turbulent jet flow structure is studied in the present experimental investigation. Polystyrene solid particles of 210, 460, and 780 μm were used. The particles' mass loading ratios ranged from 0 to 3.6. The flow Reynolds number was 2 ‘ 104, which was based on the pipe nozzle diameter and the fluid-phase centerline velocity at the nozzle exit. A two-color laser-Doppler anemometer (LDA), combined with the amplitude discrimination method and the velocity filter method, was employed for measurement. The measurement range of the jet flow was from the initial pipe exit to 90D downstream. Results are presented for the mean velocities of particle and fluid phases, the flow's turbulent intensities and the flow's Reynolds stresses. The energy spectra and the correlation functions of the two-phase jet flow were also obtained by using another one-component He-Ne LDA system.  相似文献   

19.
A technique is described for the measurement of all components of mean velocity and Reynolds stresses, in a complex turbulent flow where achieving coincidence data acquisition is difficult. The method is based on data recorded using four orientations of the laser probe. It is shown that the measurement errors are not the same for all the components of the Reynolds tensor, but they are sufficiently small to give a good accuracy. An application to a turbomachinery flow is given to illustrate the method.  相似文献   

20.
The linear stability of a flexible, cylindrical rod subjected to annular leakage flow is studied. The mathematical models developed by Li, Kaneko, and Hayama in 2002 and Fujita and Shintani in 2001 are bridged and extended, to account for a flexible rod with equilibrium offset (eccentricity) in laminar or turbulent leakage flow. Stability characteristics are analyzed numerically for a variety of configurations. It is found that simply supported rods may become unstable at a certain critical flow speed by either divergence or flutter, depending on dimensions and fluid/solid properties. It is furthermore found that the critical flow speed is quite insensitive to use of a laminar friction model at high Reynolds numbers in cases of divergence, but sensitive to it in cases of flutter. These findings are verified analytically though analysis of an energy equation. This equation shows that (i) divergence instability is independent of fluid friction; (ii) flutter instability is caused solely by fluid friction. It also suggests a possible explanation to the question of why a ‘wrong’ fluid friction assumption gives a too large critical flow speed in cases of flutter instability at a high Reynolds number.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号