首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of semifluorinated n-alkanes (SFAs), of the general formula: (CF3)2CF(CF2)6(CH2)nH (in short iF9Hn), n = 11-20 have been synthesized and employed for Langmuir monolayer characterization. Surface pressure and electric surface potential measurements were performed in addition to Brewster angle microscopy results, which enabled both direct visualization of the monolayers structure and estimation of the monolayer thickness at different stages of compression. Our paper was aimed at investigating the influence of the iso-branching of the perfluorinated fragment of the SFA molecule on the surface behavior of these molecules at the air/water interface. It occurred that iF9 SFAs with the number of carbon atoms in the hydrogenated moiety from 11 to 20 are capable of Langmuir monolayer formation. Monolayers from iF9H11 to iF9H13 are instable, whereas those formed by iF9 SFAs with longer hydrogenated chains form stable films at the free surface of water. As compared to SFAs containing perfluorinated chain in a normal arrangement, iso-branched molecules have a greater tendency to aggregate. Lower stability of monolayers formed by iF9 SFAs as compared to F10 SFAs originated from the surface nucleation observed in BAM images, even at the very initial stages of compression. The dipole moment vector for iso-branched SFAs was found to be virtually aligned with the main axis of the molecule, contrary to F10 SFAs, where the dipole moment vector was calculated to be tilted with respect to the main molecular axis. Quantitative Brewster angle microscopy measurements (relative reflectivity experiments) enabled us to monitor the changes of monolayer thickness at different stages of monolayer compression.  相似文献   

2.
A series of semifluorinated alcohols differing in the proportion of the perfluorinated to hydrogenated chains length was synthesized and investigated in Langmuir monolayers using surface pressure and surface potential measurements. All the investigated semifluorinated alcohols were found to be capable of stable floating monolayer formation. The stability of monolayers was found to be higher upon increasing the length of the perfluorinated segment. A lower stability of the monolayers from alcohols having shorter perfluorinated fragment was attributed to the aggregation process, which was visualized with Brewster angle microscopy (BAM). Most condensed monolayers were formed by compounds with longer perfluorinated moiety, whereas monolayers composed by molecules with an iso-branched perfluorinated segment were found to be more expanded. The change of electric surface potential was negative along the whole compression. The maximum absolute values of DeltaV varies, depending on the number of CF(2) groups, from ca. -400 mV for F6H10OH to ca. -700 mV for F10H10OH. The dipole moments of free molecules were calculated with Hyperchem, and the obtained values were approximately the same (within the experimental error), i.e., 2.8D for all the investigated molecules, independently on the perfluorinated fragment length. The dipole moment vector was found to be virtually aligned to the main molecular axis for the studied compounds. Therefore, the observed differences in the measured values of DeltaV can result from a different dielectric permittivity of a particular monolayer.  相似文献   

3.
Alamethicin (ALM), a 20-amino acid antibiotic peptide (peptaibol) from fungal sources, was mixed in Langmuir monolayers with six different surfactants: semifluorinated (F6H18, F10H19, F8H10OH, F6H10SH) and hydrogenated (C18SH and DODAC), aimed at finding appropriate molecules for ALM incorporation for nanodevice construction. Alamethicin-containing mixed monolayers were investigated by means of surface manometry (pi-A isotherms) and Brewster angle microscopy (BAM). Our results show that only semifluorinated alkanes can serve as an appropriate material since they form miscible and homogeneous monolayers with ALM within the whole concentration range. All the remaining surfactants, possessing polar groups, were found to demix with ALM. This effect was explained as being due to the existence of strong polar interactions between vertically oriented surfactant molecules, which tend to separate from horizontally oriented alpha-helices of the peptide. On the contrary, semifluorinated alkanes, lacking any polar group in their structure and bearing a large dipole moment, interact with ALM, also possessing a huge cumulative dipole moment. These dipole-dipole interactions between ALM and SFAs are more attractive than those between SFA molecules in their pure monolayers, causing the large ALM molecule, situated parallel to the interface, to be surrounded by SFA molecules in perpendicular orientation, leading to the formation of a highly organized binary mixed monolayer. BAM images of the ALM monolayer indicate that this peptide collapses with the nucleation and growth mechanism, like the majority of surfactants, which contradicts the model of ALM collapse by desorption, previously published in the literature.  相似文献   

4.
Organic materials have received considerable attention because of their large dipole moments and optical nonlinearities. The optically induced switching of material properties is important for studying the optoelectronic effects including second harmonic generation. Organic materials for photonic applications contain chromophore dipole which consist of acceptor and donor groups bridged by a delocalized pi-electron system. Both theoretical and experimental data show a reversible highly dipolar photoinduced intra molecular charge transfer in betaine type molecules accompanied by change of the sign and the value of the dipole moment. The arrangement of polar molecules in films is studied both by atom force microscopy and surface potential measurements. To understand the photo response of these materials, their spectroscopic and electrical properties are studied. The morphology and photoinduced surface potential switching of the self-assembled monolayers and polymer films are investigated.  相似文献   

5.
研究了基态极性分子的键角和键偶极矩之间的关系。我们采用原子偶极矩校正的Hirshfeld (ADCH)电荷来计算键偶极矩,利用电子的局域函数和键临界点处的局域函数值来分析键的电子结构。通过对IVA族(IVA = C,Si,Ge)、VA族(VA = N,P,As )、VIA族(VIA = O,S,Se)和VIIA族(VIIA = F,Cl,Br)元素形成的系列共价型基态分子,以及环状基态分子的键角和键偶极矩数据进行分析,发现在键的电子结构类似的情况下,由于键偶极矩的排斥作用,这些分子的键角随键偶极矩的增加而增大。这一发现有助于加深我们对分子几何结构的认识。  相似文献   

6.
An important contribution to the surface potential of lipid bilayers and monolayers comes from the intrinsic dipole moment of the lipid molecules. A theoretical model of the monolayer which involves a smeared dipole sheet approximation is introduced. This model is used to explore the nature and origins of the surface potential. In addition, the potential associated with phosphatidyl choline/cholesterol monolayers compressed on a Langmuir-Blodgett trough was measured with a non-contacting electrostatic voltmeter. A trough infusion configuration was fabricated to perform dynamic subphase experiments with compressed films in place. The potential/time response of monolayers to selective bimolecular systems such as antibody-antigen and concanavalin A-saccharide pairs was examined. These reactions induce spontaneous transients in dipole potential of magnitude 20–80 mV and duration of less than 1 s. The potential transients are attributed to local perturbation of lipid orientation and introduction of protein dipole fields caused by the formation of aggregates at the monolayer/water interface.  相似文献   

7.
The implementation of the physically accurate nonlinear dipole moment surface of the water monomer in the context of the Thole-type, polarizable, flexible interaction potential results in the only classical potential, which, starting from the gas phase value for the bend angle (104.52 degrees), reproduces its experimentally observed increase in the ice Ih lattice and in liquid water. This is in contrast to all other classical potentials to date, which predict a decrease of the monomer bend angle in ice Ih and in liquid water with respect to the gas phase monomer value. Simulations under periodic boundary conditions of several supercells consisting of up to 288 molecules of water used to sample the proton disorder in the ice Ih lattice yield an average value of vartheta(HOH)(I(h))=108.4 degrees +/-0.2 degrees for the minimized structures (T=0 K) and 108.1 degrees +/-2.8 degrees at T=100 K. Analogous simulations for liquid water predict an average value of vartheta(HOH)(liquid)=106.3 degrees +/-4.9 degrees at T=300 K. The increase of the monomer bend angle of water in condensed environments is attributed to the use of geometry-dependent charges that are used to describe the nonlinear character of the monomer's dipole moment surface. Our results suggest a new paradigm in the development of classical interaction potential models of water that can be used to describe condensed aqueous environments.  相似文献   

8.
The dipole moment of the gas phase water monomer is 1.85 D. When solvated in bulk water, the dipole moment of an individual water molecule is observed to be enhanced to the much larger value of 2.9 +/- 0.6 D. To understand the origin of this dipole moment enhancement, the effective fragment potential (EFP) method is used to solvate an ab initio water molecule to predict the dipole moments for various cluster sizes. The dipole moment as a function of cluster size, nH 2O, is investigated [for n = 6-20 (even n), 26, 32, 41, and 50]. Localized charge distributions are used in conjunction with localized molecular orbitals to interpret the dipole moment enhancement. These calculations suggest that the enhancement of the dipole moment originates from the decrease of the angle between the dipole vectors of the lone pairs on oxygen as the number of hydrogen bonds to that oxygen increases. Thus, the decreased angle, and the consequent increase in water dipole moment, is most likely to occur in environments with a larger number of hydrogen bonds, such as the center of a cluster of water molecules.  相似文献   

9.
Two-component Langmuir monolayers formed on 0.02M Tris buffer solution (pH 7.4) with 0.13M NaCl at 298.2K were investigated for two different fluorinated-hydrogenated hybrid amphiphiles (F6PH5PPhNa and F8PH5PPhNa or F6 and F8, respectively) with DPPC. Surface pressure (pi), surface potential (DeltaV) and dipole moment (mu( perpendicular)) as a function of molecular surface area (A) were measured by employing the Whilhelmy method and an ionizing electrode method. From the A- and DeltaV-X(F6) (or X(F8)) curves, partial molecular surface area (PMA) and apparent partial molecular surface potential (APSP) were determined as a function of surface mole fraction (X(Fn)) at discrete surface pressures. Then, the behavior of occupied surface areas and surface potentials of the respective components could be made clearer. Compressibility (C(s)), elasticity (C(s)(-1)), and excess Gibbs energy (DeltaG((ex))) as a function of X(F6) (or X(F8)) were estimated at definite pressures. These physico-chemical parameters were found to reflect the mechanical strength of monolayer films formed. The regular solution theory being applied to DeltaG((ex)), the activity coefficients (f) as well as the interaction parameter (I(p)) between DPPC and two hybrid amphiphiles in the binary monolayers were evaluated. I(p) values thus obtained indicated that F8 molecules interact more strongly with DPPC molecules than F6. Moreover, in order to better understand the morphological monolayer state, Langmuir-Blodgett (LB) films made from DPPC and fluorinated-hydrogenated hybrid amphiphiles were examined by atomic force microscopy (AFM). The miscibility of the two components in the monolayer state is evidenced by these thermodynamic quantities and AFM observations. Furthermore, AFM images demonstrated that F8 could more effectively disperse the ordered domains of DPPC than F6.  相似文献   

10.
Three model flavonoid-based bioactive molecules with different lipid chain lengths (RuCn: n=8, 12, 18) were newly synthesized. The surface properties [surface pressure (π)-area (A), surface potential (ΔV)-surface pressure (π) and dipole moment (u(⊥))-surface pressure (π)] of pure RuCn and the lecithin membrane compounds had been investigated by using the Langmuir monolayer technology. The results suggested that the distinctive monolayer behavior of RuCn is strongly dependent on the lipid chain length. The great differences in the monolayer properties brought by the lipid chain length could be attributed to two major factors: (i) the ionization degree of the bulky hydrophilic head group (including hydroxyl and NH groups) alters its local field solely via the surface potential; (ii) tring molecular (or dipole) packing density within monolayers. The excess Gibbs energy (ΔG((ex))) calculated for the RuCn-lecithin mixed monolayers infers that higher stability of the mixed monolayer can be strengthened as the lipid chain length decreases. And the addition of RuCn into lecithin membrane may increase the total u(⊥) of the binary mixed monolayers, which could inhibit the hydration of the lecithin's hydrophilic head groups. The shorter the lipid chain length of RuCn (e.g., RuC8) is, the higher the surface activity can be. Our findings provide a molecular basis for the application of such class of biomolecules in the functional food, cosmetics and medicine.  相似文献   

11.
高源  徐国华  安越 《物理化学学报》2010,26(8):2211-2216
从Helmholtz模型出发,对生长在金表面不同链长烷基硫醇自组装单分子膜(SAM)表面电势的变化规律进行了理论研究.利用量子化学软件Gaussian03和MOPAC,讨论了分子偶极矩、相对介电常数以及分子的倾斜角对SAM表面电势的影响.研究表明,不同链长烷基硫醇SAM中分子的倾斜角随烷基链长度的规律性变化是引起SAM表面电势变化的主要原因.从SAM形成机制出发,对金表面不同链长烷基硫醇SAM表面电势的变化规律及其成因提出了新的解释.  相似文献   

12.
Photoresponsive monolayers of hydrophilically substituted azobenzenes have been prepared by reaction on aminosilane monolayers on silicon surfaces. Grafting densities in the 0.2-1.0 molecule/nm(2) range were determined by X-ray reflectometry. The monolayers exhibit reversible photoisomerization, switching from a more hydrophilic trans state to a less hydrophilic cis state upon UV irradiation, in contrast with the usual behavior of most azobenzene monolayers that switch from a less to a more hydrophilic state. This indicates that the wettability is not dominated by the change in the dipole moment of the azobenzene moiety but originates from variations in the composition of the outer surface of the monolayers resulting from the reorientation of the substituent groups. The light-driven change in the water contact angle correlates linearly with the grafting density but remains small. However, the wettability contrast can be increased by forcing the molecules to stand in an improved vertical orientation, either by densifying the underlying aminosilane monolayer or by filling the voids left at the bottom of the layer of grafted azobenzene molecules.  相似文献   

13.
The thermal behavior of kaolinite–urea intercalation complex was investigated by thermogravimetry–differential scanning calorimetry (TG–DSC), X-ray diffraction (XRD), and fourier transform infrared spectroscopy (FTIR). In addition, the interaction mode of urea molecules intercalated into the kaolinite gallery was studied by means of molecular dynamics simulation. Three main mass losses were observed at 136 °C, in the range of 210–270 °C, and at 500 °C in the TG–DSC curves, which were, respectively, attributed to (1) melting of the surface-adsorbed urea, (2) removal of the intercalated urea, and (3) dehydroxylation of the deintercalated kaolinite. The three DSC endothermic peaks at 218, 250, and 261 °C were related to the successive removals of intercalated urea with three different distribution structures. Based on the angle between the dipole moment vector of urea and the basal surface of kaolinite, the three urea models could be described as follows: (1) Type A, the dipole moment vector is nearly parallel to the basal surface of kaolinite; (2) Type B, the dipole moment vector points to the silica tetrahedron with the angle between it and the basal surface of kaolinite ranging from 20°to 40°; and (3) Type C, the dipole moment vector is nearly perpendicular to the basal surface of kaolinite. The three distribution structures of urea molecules were validated by the results of the molecular dynamics simulation. Furthermore, the thermal behavior of the kaolinite–urea intercalation complex investigated by TG–DSC was also supported by FTIR and XRD analyses.  相似文献   

14.
Sum-frequency spectroscopy (SFS) in the CH and OH stretching regions was employed to obtain structural information about Langmuir monolayers on the H(2)O subphase of the model lipid dioctadecyldimethylammonium bromide (DOMA) and of the neutral surfactant methyl stearate (SME) and their mixtures and about the interfacial water structure underneath the films. These results were compared with the sum-frequency spectra of the interface between Langmuir monolayers of stearic acid and stearic acid-DOMA monolayers and water to prove that the uncompensated headgroup charge of DOMA at the interface is the reason for structuring of interfacial water close to the studied monomolecular films. Sum-frequency spectra on D(2)O subphase were also studied to account for the interference between the CH and OH spectral signatures because of the coherent nature of the SFS signals. Interfacial water structure proved to be a determining factor in the behavior of the mixed lipid monolayers. A mixing induced amplification in the surface potential DeltaV observed in our previous work was explained with total increase of the dipole moment for the mixed films, bigger than the arithmetic average for DOMA and SME monolayers alone. The increase is due to the better packing of the molecules in the mixed films and to the decrease in the interfacial water dipole moment arising from a more disordered water structure underneath the mixed monolayers.  相似文献   

15.
Abstract

Chiral amphiphilic C-undecylcalix[4]resorcinarenes substituted with phenylethyl group or L(-)nore-phedrine were found to form well-organized mono-layers at the aqueous solution-air interface. The substituents, L(-)norephedrine and phenylethyl group, determined the area occupied by the molecule on the water subphase. Introduction of these substituents lead also to perpendicular dipole moments of the molecules in the monolayers ca. 6 times larger than those of the parent amphiphilic calixresorcinarene, CAL11. Interactions of the compounds with K+ were detected by the increase of the surface potential values measured at maximum packing of the monolayer. Addition of amino acids to the subphase lead to conformational changes in the monolayers evidenced by increased surface mean molecular area of the unmodified C-undecyl-calix[4]resorcinarene. These changes were explained by the formation of hydrogen bonds with the amino acids at the expense of hydrogen bonding between the calixarene molecules in the monolayer. In contrast to unsubstituted calixresorcinarenes, interactions of the L(-)norephedrine-and phenylethyl-substituted molecules with amino acids could be easily recognized by the decrease of surface potential and dipole moment in monolayers formed by these calixarenes on subphases containing amino acids. A significant drop in the surface potential and an increased area per molecule demonstrated more specific interactions with selected amino acids: L(-)norephedrine-substituted calixarene interacted with D-valine and the phenylethyl-substituted, with D-tryptophan.  相似文献   

16.
The novel perfluorinated double long-chain salts with divalent counterions of separate electric charge, 1,1-(1,omega-alkanediyl)-bispyridinium perfluorotetradecane- carboxylate [CnBP(FC14)2 : n = 2, 6, 10, 14], were newly synthesized and their interfacial behavior was investigated by Langmuir monolayer methods. Surface properties [surface pressure (pi)-, surface potential (DeltaV)-, dipole moment (micro perpendicular)-area (A) isotherms] and morphological images of CnBP(FC14)2 monolayers on a subphase of water and on various NaCl concentrations were measured by employing the Wilhelmy method, the ionizing electrode method, fluorescence microscopy (FM), and Brewster angle microscopy (BAM). CnBP(FC14)2 formed a stable monolayer on water at 298.2 K, where these pi-A isotherms shifted to a larger molecular area with increasing charge separation and had no transition point from a disordered phase to an ordered one. On the contrary, the pi-A isotherms on NaCl solutions moved to the smaller areas, showed the transition and higher collapse pressures compared to the pi-A isotherms on water. These results suggested that a sodium chloride subphase induced the condensation of CnBP(FC14)2 molecules upon compression. In addition, it is quite noticeable that a dissociation of CnBP counterion from CnBP(FC14)2 occurs on NaCl solutions, depending on the extent of charge separation. This phenomenon was supported by the changes of the limiting area, transition pressure, collapse pressure, repeated compression-expansion cycle curve, and DeltaV behavior of perfluorotetradecanoic acid (FC14). Furthermore, temperature dependence of these monolayers was investigated, and an apparent molar quantity change on the phase transition was evaluated on 0.15 M NaCl. The morphological behavior of CnBP(FC14)2 and FC14 monolayers was also confirmed by FM and BAM images.  相似文献   

17.
The dipole potential of lipid monolayers and bilayers is positive toward their nonpolar moiety. In previous papers, we have shown that designed molecules with fluorinated polar heads can invert the polarity of un-ionized Langmuir films. Monolayers of long-chain trifluoroethyl ester RCOOCH2CF3 and trifluoroethyl ether ROCH2CF3 exhibit large negative DeltaV values, shifted by 150-200% from the positive dipole potentials of their non-fluorinated analogs (Petrov and M?hwald J. Phys. Chem. 1996, 100, 18458; Petrov et al. J. Phys. Chem. B 2005, 109, 14102). Here we report large positive surface (dipole) potentials of monolayers of N-trifluoroethyl docosanamide RCONHCH2CF3 and a 300% DeltaV shift with respect to the non-fluorinated N-ethyl docosanamide films. Comparing the dipole potentials and normal dipole moments of the RCONHCH2CF3 and RCOOCH2CF3 monolayers and the maps of the local electrostatic potential (MEP) and lipophilicity (MLP) of their molecules in vacuum, we conclude that the opposite DeltaV shifts and the difference of 1480 mV between the films of these structurally similar amphiphiles seem to be due to strongly different conformations of their heads. The large positive DeltaV values of the N-trifluoroethyl amide monolayer was related to the network of -NH...O=C- bonds fixing the orientation of the hydrophobic delta+C-F3delta- dipoles toward water. The trifluoroethyl ester heads do not form H-bonds and can adjust their energetically optimal conformation orienting the hydrophobic delta+C-F3delta- dipoles toward air. The opposite signs of the dipole potential and the apparent normal dipole moments of the trifluoroethyl ester and ethyl ester monolayers were explained via energy minimization of 36 upright closely packed molecules with "hook-like" heads. The equilibrium architecture of this ensemble shows statistical distribution of the headgroup conformations and a nano-rough monolayer-water boundary as known from X-ray reflectivity experiments and molecular dynamic simulations of phospholipid monolayers and bilayers. The average of the vertical molecular dipole moments at equilibrium agree fairly well with the measured values of mu perpendicular, and the mean molecular area in the ensemble 19.3 A2 matches the value of 18.9 +/- 0.2 A2 determined via X-ray diffraction at gracing incidence surprisingly well. These results reflect the balance of the attractive and repulsive forces between the closely packed "dry" amphiphilic molecules, but a more sophisticated molecular modeling explicitly including water would better serve to reveal the mechanism of the observed effects.  相似文献   

18.
We have investigated and learned to control switching of oligo(phenylene ethynylene)s embedded in amide-containing alkanethiol self-assembled monolayers on Au{111}. We demonstrate bias-dependent switching of the oligo(phenylene ethynylene)s as a function of the interaction between the dipole moment of the oligo(phenylene ethynylene)s and the electric field applied between the scanning tunneling microscope tip and the substrate. We are able to invert the polarity of the switches by altering their design-inverting their dipole moments. For appropriately designed switches and matrix molecules, the conductance states are stabilized by intermolecular hydrogen bonding. These results further support the hypothesis that conductance switching in these molecules is due to hybridization changes at the molecule-substrate bonds due to tilting of the switch molecules.  相似文献   

19.
Surface pressure-area, surface potential-area, and dipole moment-area isotherms were obtained for monolayers made from a partially fluorinated surfactant, (perfluorooctyl)undecyldimorpholinophosphate (F8H11DMP), dipalmitoylphosphatidylcholine (DPPC), and their combinations. Monolayers, spread on a 0.15 M NaCl subphase, were investigated at the air/water interface by the Wilhelmy method, ionizing electrode method, and fluorescence microscopy. Surface potentials were analyzed using the three-layer model proposed by Demchak and Fort. The contribution of the dimorpholinophosphate polar head group of F8H11DMP to the vertical component of the dipole moment was estimated to be 4.99 D. The linear variation of the phase transition pressure as a function of F8H11DMP molar fraction (X(F8H11DMP)) demonstrated that DPPC and F8H11DMP are miscible in the monolayer. This result was confirmed by deviations from the additivity rule observed when plotting the molecular areas and the surface potentials as a function of X(F8H11DMP) over the whole range of surface pressures investigated. Assuming a regular surface mixture, the Joos equation, which was used for the analysis of the collapse pressure of mixed monolayers, allowed calculation of the interaction parameter (xi=-1.3) and the energy of interaction (Delta epsilon =537 Jmol(-1)) between DPPC and F8H11DMP. The miscibility of DPPC and F8H11DMP within the monolayer was also supported by fluorescence microscopy. Examination of the observed flower-like patterns showed that F8H11DMP favors dissolution of the ordered LC phase domains of DPPC, a feature that may be key to the use of phospholipid preparations as lung surfactants.  相似文献   

20.
Recent studies have shown that dipalmitoyl phosphatidyl choline (DPPC) monolayers respond cooperatively to the presence of dipyridamole (DIP) guest molecules even at small concentrations, which is a signature of molecular recognition. Using semiempirical quantum mechanical calculations for the DIP-DPPC system, we show that the incorporation of DIP causes large changes in the vertical dipole moment of the DIP-DPPC system, which can explain why measurable changes in surface potential are observed experimentally even at very low DIP concentrations. The calculations are also consistent with the anomalous concentration dependence of the surface pressure and surface potential isotherms for DIP-DPPC monolayers. Rather than saturation or a continuous increase in the effects caused by the incorporation of increasing amounts of DIP, the experimentally observed inversion in the behavior of the surface potential as the DIP concentration reaches 0.5 mol % would be caused by a change in DIP conformation, from a vertical arrangement for the DIP rings to a horizontal or intermediate arrangement. The strong dipolar interactions indicated in the calculations may also be the origin of the drastic changes in monolayer morphology seen in fluorescence microscopy images, with triskellion-shaped domains being formed for condensed DIP-DPPC monolayers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号