首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
The present work deals with the analysis of the quasi-particle spectrum and the density of states of monolayer and bilayer (AB- and AA-stacked) graphene. The tight binding Hamiltonian containing nearest-neighbor and next-nearest neighbor hopping and onsite Coulomb interaction within two triangular sub-lattice approach for monolayer graphene, along-with the interlayer coupling parameter for bilayer graphene has been employed. The expressions of quasi-particle energies and the density of states (DOS) are obtained within mean-field Green’s function equations of motion approach. It is found that next-nearest-neighbour intralayer hopping introduce asymmetry in the electronic states above and below the zero point energy in monolayer and bilayer (AA- and AB-stacked) graphene. The behavior of electronic states in monolayer and bilayer graphene is different and highly influenced by interlayer coupling and Coulomb interaction. It has been pointed out that the interlayer coupling splits the quasi-particle peak in density of states while the Coulomb interaction suppresses the bilayer splitting and generates a gap at Fermi level in both AA- and AB-stacked bilayer graphene. The theoretically obtained quasi-particle energies and density of states in monolayer and bilayer (AA- and AB-stacked) graphene has been viewed in terms of recent ARPES and STM data on these systems.  相似文献   

2.
We employ the tight binding model to describe the electronic band structure of bilayer graphene and we explain how the optical absorption coefficient of a bilayer is influenced by the presence and dispersion of the electronic bands, in contrast to the featureless absorption coefficient of monolayer graphene. We show that the effective low energy Hamiltonian is dominated by chiral quasiparticles with a parabolic dispersion and Berry phase 2π. Layer asymmetry produces a gap in the spectrum but, by comparing the charging energy with the single particle energy, we demonstrate that an undoped, gapless bilayer is stable with respect to the spontaneous opening of a gap. Then, we describe the control of a gap in the presence of an external gate voltage. Finally, we take into account the influence of trigonal warping which produces a Lifshitz transition at very low energy, breaking the isoenergetic line about each valley into four pockets.  相似文献   

3.
T.S. Li  Y.C. Huang  M.F. Lin  S.C. Chang 《哲学杂志》2013,93(23):3177-3187
The electronic and transport properties of bilayer graphene nanoribbons with different width are investigated theoretically by using the tight-binding model. The energy dispersion relations are found to exhibit significant dependence on the interlayer interactions and the geometry of the bilayer graphene nanoribbons. The energy gaps are oscillatory with the upper ribbon displacement. For all four types of bilayer graphene nanoribbons, the bandgaps touch the zero value and exhibit semiconductor–metal transitions. Variations in the electronic structures with the upper ribbon displacement will be reflected in the electrical and thermal conductance. The chemical-potential-dependent electrical and thermal conductances exhibit a stepwise increase and spike behavior. These conductances can be tuned by varying the upper ribbon displacement. The peak and trench structures of the conductance will be stretched out as the temperature rises. In addition, quantum conductance behavior in bilayer graphene nanoribbons can be observed experimentally at temperature below 10 K.  相似文献   

4.
伞晓娇  韩柏  赵景庚 《中国物理 B》2016,25(3):37305-037305
We have studied the structural and optical properties of semi-fluorinated bilayer graphene using density functional theory. When the interlayer distance is 1.62 , the two graphene layers in AA stacking can form strong chemical bonds.Under an in-plane stress of 6.8 GPa, this semi-fluorinated bilayer graphene becomes the energy minimum. Our calculations indicate that the semi-fluorinated bilayer graphene with the AA stacking sequence and rectangular fluorinated configuration is a nonmagnetic semiconductor(direct gap of 3.46 e V). The electronic behavior at the vicinity of the Fermi level is mainly contributed by the p electrons of carbon atoms forming C=C double bonds. We compare the optical properties of the semifluorinated bilayer graphene with those of bilayer graphene stacked in the AA sequence and find that the semi-fluorinated bilayer graphene is anisotropic for the polarization vector on the basal plane of graphene and a red shift occurs in the [010]polarization, which makes the peak at the low-frequency region located within visible light. This investigation is useful to design polarization-dependence optoelectronic devices.  相似文献   

5.
林奎鑫  李多生  叶寅  江五贵  叶志国  Qinghua Qin  邹伟 《物理学报》2018,67(24):246802-246802
石墨烯是一种准二维蜂窝网状结构新型纳米材料,石墨烯的层数和构型对其性能产生重要影响.固体中准粒子的量子状态由其本身的对称性质所决定,扭转双层石墨烯打破了对称性,引起了强烈的层间耦合作用,改变了扭转双层石墨烯的电子能带、声子色散、形成能垒等物性,产生了独特的性能,如可以连续调控带隙0-250 meV,光电效应的响应度相比于单层石墨烯提高了80倍,因此对扭转双层石墨烯功能化研究有重大意义.本文同时还论述了扭转双层石墨烯向类金刚石转变的理论与实验研究进展,发现扭转双层石墨烯呈现出具有类金刚石结构与性能特征.进一步阐述调控扭转双层石墨烯的扭转角度对其内在性能的影响,揭示这种新型纳米结构在原子层次的行为特征.最后介绍了如何调控制备扭转双层石墨,分析其调控机理,讨论了各种制备工艺的不足与发展趋势.因此本文从扭转双层石墨烯的输运性质、晶体结构转变、制备三个方面展开阐述,并对其在先进电子器件领域的潜在应用进行了展望.  相似文献   

6.
Mohsen Yarmohammadi 《中国物理 B》2017,26(2):26502-026502
The tight-binding Harrison model and Green's function approach have been utilized in order to investigate the contribution of hybridized orbitals in the electronic density of states(DOS) and electronic heat capacity(EHC) for four hydrogenated structures, including monolayer chair-like, table-like, bilayer AA- and finally AB-stacked graphene. After hydrogenation, monolayer graphene and bilayer graphene are behave as semiconducting systems owning a wide direct band gap and this means that all orbitals have several states around the Fermi level. The energy gap in DOS and Schottky anomaly in EHC curves of these structures are compared together illustrating the maximum and minimum band gaps are appear for monolayer chair-like and bilayer AA-stacked graphane, respectively. In spite of these, our findings show that the maximum and minimum values of Schottky anomaly appear for hydrogenated bilayer AA-stacked and monolayer table-like configurations, respectively.  相似文献   

7.
New nanomeshes with closed holes based on bilayer graphene twisted by 30° are studied. It is found that such structures can have different electronic characteristics (from semiconducting to metallic) depending on the shape of holes. Comparison with the single-layer graphene meshes having holes of similar shapes demonstrates a significant difference of their electronic spectra. The meshes with triangular “folded” holes turn out to be nonmagnetic in contrast to the single-layer meshes with the same holes. The spectra of 30° bilayer graphene nanomeshes exhibit numerous peaks in the electron density of states within a wide energy range. This makes such structures promising for applications in photovoltaics and optoelectronics. Features of 30° Moiré Graphene Bilayers with Folded Holes.  相似文献   

8.
We report the existence of zero-energy surface states localized at zigzag edges of bilayer graphene. Working within the tight-binding approximation we derive the analytic solution for the wave functions of these peculiar surface states. It is shown that zero-energy edge states in bilayer graphene can be divided into two families: (i) states living only on a single plane, equivalent to surface states in monolayer graphene and (ii) states with a finite amplitude over the two layers, with an enhanced penetration into the bulk. The bulk and surface (edge) electronic structure of bilayer graphene nanoribbons is also studied, both in the absence and in the presence of a bias voltage between planes.  相似文献   

9.
Twisted bilayer graphene, in which interlayer interaction plays a critical role in this coupled system, is characterized for its angle‐dependent electronic and optical properties. Here, we present a systematic Raman study of single‐crystal twisted bilayer graphene grains, with the spectra of each bilayer graphene precisely correlated to its twist angle using combined transmission electron microscopic technique. Van Hove singularities develop as a result of band rehybridization at the crossing Dirac cones of the two layers, giving rise to a critical twist angle that determines the energy separation between the saddle points in the band structure and the resonance Raman spectra accordingly. The 2D mode becomes sensitive to the twist angle, showing the angle‐dependent position, peak width, and intensity. Our results interpreted in the framework of angle‐dependent double resonance scattering provide an important experimental perspective in understanding the coupled bilayer graphene system. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
We numerically investigate the mesoscopic electronic transport properties of Bernal-stacked bilayer/trilayer graphene connected with four monolayer graphene terminals. In armchair-terminated metallic bilayer graphene, we show that the current from one incoming terminal can be equally partitioned into other three outgoing terminals near the charge-neutrality point, and the conductance periodically fluctuates, which is independent of the ribbon width but influenced by the interlayer hopping energy. This finding can be clearly understood by using the wave function matching method, in which a quantitative relationship between the periodicity, Fermi energy, and interlayer hopping energy can be reached. Interestingly, for the trilayer case, when the Fermi energy is located around the charge-neutrality point, the fractional quantized conductance 1/(4e2h) can be achieved when system exceeds a critical length.  相似文献   

11.
Monolayer and bilayer graphenes have generated tremendous excitement as the potentially useful electronic materials due to their unique features.We report on monolayer and bilayer epitaxial graphene field-effect transistors(GFETs)fabricated on SiC substrates.Compared with monolayer GFETs,the bilayer GFETs exhibit a significant improvement in dc characteristics,including increasing current density Ids,improved transconductance g_m,reduced sheet resistance R_(on),and current saturation.The improved electrical properties and tunable bandgap in the bilayer graphene lead to the excellent dc performance of the bilayer GFETs.Furthermore,the improved dc characteristics enhance a better rf performance for bilayer graphene devices,demonstrating that the quasifree-standing bilayer graphene on SiC substrates has a great application potential for the future graphene-based electronics.  相似文献   

12.
R. Majidi  A.R. Karami 《Molecular physics》2013,111(21):3194-3199
In the present paper, we have used density functional theory to study electronic properties of bilayer graphene and graphyne doped with B and N impurities in the presence of electric field. It has been demonstrated that a band gap is opened in the band structures of the bilayer graphene and graphyne by B and N doping. We have also investigated influence of electric field on the electronic properties of BN-doped bilayer graphene and graphyne. It is found that the band gaps induced by B and N impurities are increased by applying electric field. Our results reveal that doping with B and N, and applying electric field are an effective method to open and control a band gap which is useful to design carbon-based next-generation electronic devices.  相似文献   

13.
杨云畅  武斌  刘云圻 《物理学报》2017,66(21):218101-218101
石墨烯是一种具有优异性质,在光电及能源领域具有巨大应用前景的二维材料.尽管单层石墨烯具有超高的迁移率,但是它的能带结构具有狄拉克锥(K点),即价带和导带并未有明显分离,所以在半导体器件方面的应用受到一定的限制.由双层石墨烯搭建而成的双门器件,在施加外加电场的情况下,它的带隙可以打开,并在一定范围内可调,这种性质赋予了双层石墨烯在半导体器件应用方面的前景.然而机械或者液相剥离石墨烯,在层数和大小方面可控性较差.如何通过化学气相沉积法可控制备双层石墨烯是目前研究的核心问题之一.本文主要综述了如何通过化学气相沉积法制备双层石墨烯和制备双层石墨烯器件的一系列工作,其中包括最新的研究进展,对生长机理的研究做了详细的介绍和讨论,并对该领域的发展进行了展望.  相似文献   

14.
吴江滨  张昕  谭平恒  冯志红  李佳 《物理学报》2013,62(15):157302-157302
本文将第一性原理和紧束缚方法结合起来, 研究了层间不同旋转角度对双层石墨烯的电子能带结构和态密度的影响. 分析发现, 旋转双层石墨烯具有线性的电子能量色散关系, 但其费米速度随着旋转角度的减小而降低. 进一步研究其电子能带结构发现, 不同旋转角度的双层石墨烯在M点可能会出现大小不同的的带隙, 而这些能隙会增强双层石墨烯的拉曼模强度, 并由拉曼光谱实验所证实. 通过对比双层石墨烯的晶体结构和电子态密度, 发现M点处带隙来自于晶体结构中的“类AB堆垛区”. 关键词: 旋转双层石墨烯 第一性原理 紧束缚 电子结构  相似文献   

15.
Various physical properties of epitaxial graphene grown on SiC(0001) are studied. First, the electronic transport in epitaxial bilayer graphene on SiC(0001) and quasi-free-standing bilayer graphene on SiC(0001) is investigated. The dependences of the resistance and the polarity of the Hall resistance at zero gate voltage on the top-gate voltage show that the carrier types are electron and hole, respectively. The mobility evaluated at various carrier densities indicates that the quasi-free-standing bilayer graphene shows higher mobility than the epitaxial bilayer graphene when they are compared at the same carrier density. The difference in mobility is thought to come from the domain size of the graphene sheet formed. To clarify a guiding principle for controlling graphene quality, the mechanism of epitaxial graphene growth is also studied theoretically. It is found that a new graphene sheet grows from the interface between the old graphene sheets and the SiC substrate. Further studies on the energetics reveal the importance of the role of the step on the SiC surface. A first-principles calculation unequivocally shows that the C prefers to release from the step edge and to aggregate as graphene nuclei along the step edge rather than be left on the terrace. It is also shown that the edges of the existing graphene more preferentially absorb the isolated C atoms. For some annealing conditions, experiments can also provide graphene islands on SiC(0001) surfaces. The atomic structures are studied theoretically together with their growth mechanism. The proposed embedded island structures actually act as a graphene island electronically, and those with zigzag edges have a magnetoelectric effect. Finally, the thermoelectric properties of graphene are theoretically examined. The results indicate that reducing the carrier scattering suppresses the thermoelectric power and enhances the thermoelectric figure of merit. The fine control of the Fermi energy position is thought to be key for the practical use of graphene as a thermoelectric material, which could be achieved with epitaxial graphene. All of these results reveal that epitaxial graphene is physically interesting.  相似文献   

16.
We address the electronic phase engineering in the impurity-infected functionalized bilayer graphene with hydrogen atoms (H-BLG) subjected to a uniform Zeeman magnetic field, employing the tight-binding model, the Green's function technique, and the Born approximation. In particular, the key point of the present work is focused on the electronic density of states (DOS) in the vicinity of the Fermi energy. By exploiting the perturbative picture, we figure out that how the interaction and/or competition between host electrons, guest electrons, and the magnetic field potential can lead to the phase transition in H-BLG. Furthermore, different configurations of hydrogenation, namely reduced table-like and reduced chair-like, are also considered when impurities are the same and/or different. A comprehensive information on the various configurations provides the semimetallic and gapless semiconducting behaviors for unfunctionalized bilayer graphene and H-BLGs, respectively. Further numerical calculations propose a semimetal-to-metal and gapless semiconductor-to-semimetal phase transition, respectively, when only turning on the magnetic field. Interestingly, the results indicate that the impurity doping alone affects the systems as well, leading to semimetal-to-metal and no phase transition in the pristine system and hydrogenated ones, respectively. However, the combined effect of charged impurity and magnetic field shows that the pristine bilayer graphene is not influenced much as the functionalized ones and phase back transitions appear. Tuning of the electronic phase of H-BLG by using both types of electronic and magnetic perturbations play a decisive role in optical responses.  相似文献   

17.
We consider bilayer graphene in the presence of spin-orbit coupling, in order to assess its behavior as a topological insulator. The first Chern number n for the energy bands of single-layer graphene and that for the energy bands of bilayer graphene are computed and compared. It is shown that for a given valley and spin, n for a Bernal-stacked bilayer is doubled with respect to that for the monolayer. This implies that this form of bilayer graphene will have twice as many edge states as single-layer graphene, which we confirm with numerical calculations and analytically in the case of an armchair terminated surface. Bernal-stacked bilayer graphene is a weak topological insulator, whose surface spectrum is susceptible to gap opening under spin-mixing perturbations. We assess the stability of the associated topological bulk state of bilayer graphene under various perturbations. In contrast, we show that AA-stacked bilayer graphene is not a topological insulator unless the spin-orbit coupling is bigger than the interlayer hopping. Finally, we consider an intermediate situation in which only one of the two layers has spin-orbit coupling, and find that although individual valleys have non-trivial Chern numbers for the case of Bernal stacking, the spectrum as a whole is not gapped, so the system is not a topological insulator.  相似文献   

18.
冯伟  张戎  曹俊诚 《物理学报》2015,64(22):229501-229501
石墨烯是一种零带隙二维的半导体材料, 具有极高的载流子迁移率, 优异的机械、电学、热学和光学等性能. 在太赫兹辐射源、调制器和探测器件的研究中, 石墨烯材料具有独特的优势. 本文以石墨烯材料在太赫兹辐射源、调制器以及探测器等器件方面的应用为主, 综述了石墨烯太赫兹器件的最新研究进展.  相似文献   

19.
20.
J A Crosse  Pilkyung Moon 《中国物理 B》2021,30(7):77803-077803
We study the magneto-optical conductivity of a number of van der Waals heterostructures, namely, twisted bilayer graphene, AB-AB and AB-BA stacked twisted double bilayer graphene and monolayer graphene and AB-stacked bilayer graphene on hexagonal boron nitride. As the magnetic field increases, the absorption spectrum exhibits a self-similar recursive pattern reflecting the fractal nature of the energy spectrum. Whilst twisted bilayer graphene displays only weak circular dichroism, the other four structures display strong circular dichroism with monolayer graphene and AB-stacked bilayer graphene on hexagonal boron nitride being particularly pronounced owing to strong inversion symmetry breaking properties of the hexagonal boron nitride layer. As the left and right circularly polarized light interact with these structures differently, plane-polarized incident light undergoes a Faraday rotation and gains an ellipticity when transmitted. The size of the respective angles is on the order of a degree.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号