首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We study theoretically the drift of resonant particles in a buffer medium when a traveling light wave impinges on the medium, with allowance for the velocity dependence of the transport collision rate. When the pressure of light dominates over the light-induced drift (low pressure of the buffer gas or the drift of conduction electrons in semiconductors), we discover a new sudden transformation of the spectral dependence of the drift velocity of the resonant particles: Instead of the ordinary bell-shaped function representing the velocity spectrum we have a double-humped curve with deep dip at the center of the absorption line. We show that the largest transformation of the drift velocity spectrum occurs in the atmosphere of a heavy buffer gas in the case of Coulomb interaction between the resonant and buffer particles. The transformation effect is caused by the variation of the transport rate of the collisions of the resonant and buffer particles due to the recoil effect in the absorption of radiation. Zh. éksp. Teor. Fiz. 112, 856–868 (September 1997)  相似文献   

2.
We discuss various speeds of propagation that are relevant for the dynamics of classical waves in random media: phase velocity, group velocity and transport velocity. The transport velocity can be much smaller than the phase velocity due to the long dwelling of classical waves inside resonant scatterers. We show that the transport velocity of light can be obtained experimentally by study both transient and steady-state diffusion of light.  相似文献   

3.
We study magnetic field modulated transport properties of Dirac fermions in graphene, where Dirac fermions penetrate through a velocity barrier. We find strong wave vector filtering and resonant effect. The angular-dependent region of resonant tunneling is suppressed by tuning velocity barriers. We can also found that the confined states in this velocity barrier can be changed by the magnetic field. Various novel devices, such as wavevector filter and magnetic switches, may be constructed based on our observed phenomena.  相似文献   

4.
We report the first direct observation of Brillouin-like propagation modes in a dissipative periodic optical lattice. This has been done by observing a resonant behavior of the spatial diffusion coefficient in the direction corresponding to the propagation mode with the phase velocity of the moving intensity modulation used to excite these propagation modes. Furthermore, we show theoretically that the amplitude of the Brillouin mode is a nonmonotonic function of the strength of the noise corresponding to the optical pumping, and discuss this behavior in terms of nonconventional stochastic resonance.  相似文献   

5.
We investigate the quantum transport of a single particle trapped in a tilted optical lattice modulated with periodical delta kicks, and attempt to figure out the relationship between chaos and delocalization or quantum tunneling. We illustrate some resonant parameter lines existing in both chaotic and regular parameter regions, and discover the velocity of delocalization of particle tends to faster in the resonant line as well as the lines in which the lattice tilt is an integral multiple n of tilt driving frequency in chaotic region. While the degree of localization is linked to the distance between parameter points and resonant lines. Those useful results can be experimentally applied to control chaos-assisted transport of single particle held in optical lattices.  相似文献   

6.
蔚涛  罗懋康  华云 《物理学报》2013,62(21):210503-210503
针对黏性介质引起的Brown粒子质量存在随机涨落以及阻尼力对历史速度具有记忆性等问题, 本文首次提出分数阶质量涨落谐振子模型, 以考察黏性介质中Brown粒子的动力学特性. 首先, 将Shapiro-Loginov 公式分数阶化, 使之适用于对含指数关联随机系数的分数阶随机微分方程的求解. 然后, 利用随机平均法和分数阶Shapiro-Loginov公式推导系统稳态响应振幅的解析表达式, 并据此研究系统的共振行为; 最后, 通过仿真实验验证理论结果的可靠性. 研究表明: 1)质量涨落噪声可诱导系统产生随机共振行为; 2)记忆性阻尼力可诱导系统产生参数诱导共振行为; 3)不同参数条件下, 系统表现出单峰共振、双峰共振等多样化的共振形式. 关键词: 黏性介质 质量涨落 阻尼记忆性 分数阶谐振子  相似文献   

7.
The peculiar behavior of Kondo-peak splitting under a magnetic field and bias can be explained by calculating the nonequilibrium retarded Green's function via the nonperturbative dynamical theory (NDT). In the NDT, the application of a lead-dot-lead system reveals that new resonant tunneling levels are activated near the Fermi level and the conventional Kondo peak at the Fermi level diminishes when a bias is applied. Magnetic field causes asymmetry in the spectral density and transforms the new resonant peak into a major peak whose behavior explains all the features of the nonequilibrium Kondo phenomenon. We also show the mechanism of coherent transport through the new resonant tunneling level.  相似文献   

8.
With the energy-density coherent potential approximation method, a series of calculations concerning the contribution from the morphology and dispersion of random media composed of core-shell spheres on the transport properties of random media are conducted in terms of the scattering-cross-section efficiency factor, mean free path, velocity of electromagnetic energy, and diffusion coefficient. It is found that the core layer introduces more complicated resonant modes which lead to diverse possibilities to sharply decrease the transport of light within random media.  相似文献   

9.
We report a first-principles study of static transport of localized waves in quasi-one-dimensional open media. We find that such transport, dominated by disorder-induced resonant transmissions, displays novel diffusive behavior. Our analytical predictions are entirely confirmed by numerical simulations. We show that the prevailing self-consistent localization theory [B. A. van Tiggelen, Phys. Rev. Lett. 84, 4333 (2000)] is valid only if disorder-induced resonant transmissions are negligible. Our findings open a new direction in the study of Anderson localization in open media.  相似文献   

10.
We propose a new method of analyzing the quantum interference effect of the resonant transport in ballistic open systems. The new method is to obtain the resonant eigenvalues by computing the norm of the retarded and advanced Green's functions. Using the method, we illustrate for a fullerene and an AB-ring the relation between each resonant state and each asymmetric conductance peak, namely the Fano peak. We show that the combination of resonant states determines the symmetry of a conductance peak and that the Fano peak is caused by the asymmetry of the numerator of the conductance around a resonance. The Fano peak appears not only due to the quantum interference effect as often claimed, but more generally due to the resonant transport.  相似文献   

11.
Multiple scattering of electromagnetic (EM) waves arises in disordered media with a refractive index varying on the scale of the wavelength. The diffusion approximation is a powerful tool to treat multiple scattering as a photon random walk, neglecting resonant phenomena. However, as the light intensity varies on a scale much smaller than the transport mean free path, resonances may occur in media formed by finite-size scatterers and break the diffusion approximation. The energy and phase velocity are very useful tools to reveal the onset of the resonant transport regime. In this paper the study of the propagation of terahertz (THz) waves through 3D random media by employing terahertz time-domain spectroscopy (THz-TDS) is addressed. Specifically, measurements of the electric field transmitted by samples of different thicknesses made of 1 mm diameter silica spheres dispersed in a paraffin matrix at different filling fractions are reported. This investigation has provided an accurate measurement of the EM field phase and, hence, information on the radiation propagation velocity that has enabled the first observation of a photonic glass at the THz range.  相似文献   

12.
Nonlocal ion transport in a weakly ionized plasma with a strong electric field is analyzed. It is assumed that charge-exchange interactions are the main mechanism of ion scattering. Ion density and drift velocity are determined for nonuniform time varying electric field by using both the direct solution of the kinetic equation and the Chapman-Enskog-type approach. The ion mean velocity is given by an integro-differential operator applied to the electric field. Ion density and drift velocity exhibit resonant behaviour when ω≃kW0, which corresponds to the resonance between ions moving with average velocity W0 and wave traveling with the phase velocity ω/k  相似文献   

13.
We review some of our recent experimental results on charge transport in organic nanostructures such as self-assembled monolayer and monolayers of organic semiconductors. We describe a molecular rectifying junction made from a sequential self-assembly on silicon. These devices exhibit a marked current-voltage rectification behavior due to resonant transport between the Si conduction band and the π molecule highest occupied molecular orbital of the π molecule. We discuss the role of metal Fermi level pinning in the current-voltage behavior of these molecular junctions. We also discuss some recent insights on the inelastic electron tunneling behavior of Si/alkyl chain/metal junctions.  相似文献   

14.
We predict that in quantum conductors the excess noise can be absent or even negative provided the energy dependence of the electron transmission probability at the Fermi energy is sufficiently sharp. In other words the current (or voltage) fluctuations under transport conditions can be less than in equilibrium. As examples for this surprising behavior we consider resonant tunneling, ballistic point contacts and the integer quantum Hall effect.Work performed within the research program of the Sonderforschungsbereich 341, Köln-Aachen-Jülich  相似文献   

15.
We propose a potentially practical scheme for implementing an n-qubit Toffoli gate by elaborately controlling the transport of ultracold ions through stationary laser beams. Conditioned on the uniform ionic transport velocity, the n-qubit Toffoli gate can be realized with high fidelity and high successful probability under current experimental conditions, which depends on a single resonant interaction with n trapped ions and has constant implementation time with the increase of qubits. We show that the increase of the ion number can improve the fidelity and the successful probability of the Toffoli gate.  相似文献   

16.
Using transfer matrix method, transport properties in graphene based double velocity-barrier structures under magnetic and electric fields are numerically studied. It is found that velocity barriers for the velocity ratio (the Fermi velocity inside the barrier to that outside the barrier) less than one (or for the velocity ratio greater than one) have properties similar to electrostatic wells (or barriers). The velocity barriers for the velocity ratio greater than one significantly enlarge the resonant tunneling region of electrostatic barriers. In the presence of magnetic field, the plateau width of the Fano factor with a Poissonian value shortens (or broadens) for the case of the velocity ratio less than one (or greater than one). When the Fermi energy is equal to the electrostatic barrier height, for different values of the velocity ratio, both the conductivities and the Fano factors remain fixed.  相似文献   

17.
The velocity of oscillatory motion of domain walls is investigated as a function of the parameters of a magnetic material and an external acoustic field. The dependence of the amplitude of domain-wall oscillations on the frequency of an external acoustic wave is determined. It is found that this dependence exhibits a resonant behavior.  相似文献   

18.
唐黎明  王玲玲  王宁  严敏 《物理学报》2008,57(5):3203-3211
运用模匹配方法和求解单电子薛定谔方程,来演示非对称T型磁量子结构的电子输运性质.结果表明,结构因子和磁势垒都能改变电子散射模数,电子输运谱因此变得复杂而丰富,散射区域出现了完全局域态和磁边缘态.在特定的结构参数和磁场强度下,能观测到宽谷、尖峰、共振透射和共振反射等电子输运现象,即可以通过调节磁场大小和结构参数来实现波矢过滤. 关键词: 介观体系 电子输运 磁效应  相似文献   

19.
The theory of the photon drag of dipolar excitons in double-quantum-well nanostructures is presented. It is shown that the exciton-drag flux density features a resonant behavior if the photon frequency is close to some transition frequency in the discrete exciton spectrum. When the structure is irradiated with polarized light, the resonant enhancement of the drag current occurs when the photon energy coincides with the energy of an excited level of the exciton internal motion and the components of the angular momentum of internal motion in the initial and final states differ by one. The proposed effect can be used to control exciton transport in nanostructures based on a two-dimensional exciton gas.  相似文献   

20.
Spin-coherent quantum transport in carbon nanotube magnetic tunnel junctions is investigated theoretically. A spin-valve effect is found for metallic, armchair tubes, with a magnetoconductance ratio ranging up to 20%. Because of the finite length of the nanotube junctions, transport is dominated by resonant transmission. The magnetic tunnel junctions are found to have distinctly different transport behavior depending on whether or not the length of the tubes is commensurate with a 3N+1 rule, with N the number of basic carbon repeat units along the nanotube length.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号