首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Giant fluctuations in the 2D-electron recombination radiation were studied in structures with a single or double GaAs quantum well under quantum Hall effect conditions. It is established that, if these conditions are exactly satisfied, the amplitude of the 2D-electron photoluminescence (PL) intensity is several orders of magnitude higher than the noise level, with the noise having a normal (Poisson) distribution. The fluctuations in the PL line intensity are accompanied by a jumpwise change in the line positions. Analogous jumps were also observed in the spectra of inelastic light scattering by 2D electrons in structures with a single GaAs quantum well. The fluctuation processes are correlated over macroscopic distances. The characteristic correlation length is 1–2 mm. The spectral density of giant fluctuations was found to exhibit narrow peaks. The ratios of the frequencies of these peaks are equal to those of Fibonacci numbers. The appearance of such frequencies in the fluctuation spectrum indicates that the fluctuations studied bear a resemblance to processes occurring in open dissipative dynamic systems. The methods developed in the theory of these systems can, in principle, be used to study giant fluctuations.  相似文献   

2.
Anomalous intensity fluctuations are observed in the spectrum of radiative ecombination of quasi-two-dimensional (2D) electrons with photoexcited holes in a single quantum well. The fluctuations are observed exclusively under the conditions of the quantum Hall effect (QHE). It is shown that, if the QHE conditions are not fulfilled, the radiation intensity fluctuates strictly following the Poisson distribution 〈δN 2〉/〈N〉= 1), whereas in the QHE regime the fluctuation amplitude increases by several orders of magnitude (〈δ N 2〉/〈N〉~102). It is demonstrated that the maxima of the emission noise amplitude coincide with the maxima of inverse magnetoresistance of 2D electrons in the QHE regime and correspond to establishing an anomalously high uniformity of the system.  相似文献   

3.
Low-lying collective excitations above highly correlated ground states of few interacting electrons confined in GaAs semiconductor quantum dots are probed by resonant inelastic light scattering. We highlight that separate studies of the changes in the spin and charge degrees of freedom offer unique access to the fundamental interactions. The case of quantum dots with four electrons is found to be determined by a competition between triplet and singlet ground states that is uncovered in the rich light scattering spectra of spin excitations. These light scattering results are described within a configuration-interaction framework that captures the role of electron correlation with quantitative accuracy. Recent light scattering results that reveal the impact of anisotropic confining potentials in laterally coupled quantum dots are also reviewed. In these studies, inelastic light scattering methods emerge as powerful probes of collective phenomena and spin configurations in quantum dots with few electrons.  相似文献   

4.
Excitation modes in the range 2/5>or=nu>or=1/3 of the fractional quantum Hall regime are observed by resonant inelastic light scattering. Spectra of spin-reversed excitations suggest a structure of lowest spin-split Landau levels of composite fermions that is similar to that of electrons. Spin-flip energies determined from spectra reveal significant composite fermion interactions. The filling factor dependence of mode energies displays an abrupt change in the middle of the range when there is partial population of a composite fermion level.  相似文献   

5.
We observe resonant Rayleigh scattering of light from quantum Hall bilayers at Landau level filling factor nu = 1. The effect arises below 1 Kelvin when electrons are in the incompressible quantum Hall phase with strong interlayer correlations. Marked changes in the Rayleigh scattering signal in response to application of an in-plane magnetic field indicate that the unexpected temperature dependence is linked to formation of a nonuniform electron fluid close to the phase transition towards the compressible state. These results demonstrate a new realm of study in which resonant Rayleigh scattering methods probe quantum phases of electrons in semiconductor heterostructures.  相似文献   

6.
The isofrequency dependences of inelastic light scattering in quartz crystals near the phase transition point are calculated taking into account both spatially inhomogeneous fluctuations of the order parameter and the finite spectral width of the spectrometer slit. It was found that the theory is in satisfactory agreement with the experimental data on dynamic opalescence observed in quartz crystals during phase transformations.  相似文献   

7.
We have performed magneto-transport experiments in modulation-doped Ga0.7In0.3NyAs1−y/GaAs quantum wells with nitrogen mole fractions 0.4%, 1.0% and 1.5%. Classical magnetotransport (resistivity and low-field Hall effect) measurements have been performed in the temperatures between 1.8 and 275 K, while quantum Hall effect measurements in the temperatures between 1.8 and 47 K and magnetic fields up to 11 T.The variations of Hall mobility and Hall carrier density with nitrogen mole fractions and temperature have been obtained from the classical magnetotransport measurements. The results are used to investigate the scattering mechanisms of electrons in the modulation-doped Ga0.7In0.3NyAs1−y/GaAs quantum wells. It is shown that the alloy disorder scattering is the major scattering mechanism at investigated temperatures.The quantum oscillations in Hall resistance have been used to determine the carrier density, effective mass, transport mobility, quantum mobility and Fermi energy of two-dimensional (2D) electrons in the modulation-doped Ga0.7In0.3NyAs1−y/GaAs quantum wells. The carrier density, in-plane effective mass and Fermi energy of the 2D electrons increases when the nitrogen mole fraction is increased from y=0.004 to 0.015. The results found for these parameters are in good agreement with those determined from the Shubnikov-de Haas effect in magnetoresistance.  相似文献   

8.
Giant fluctuations of the recombination-radiation intensity of two-dimensional electrons were studied in double quantum wells with different well and barrier widths in the regime of the integer quantum Hall effect. It was found that the giant fluctuations of photoluminescence intensity in double quantum wells with a narrow barrier (l<150 Å) occur in a narrow magnetic-field interval, where the sum of electron concentrations in both wells corresponds to the integer filling factors 4, 8, and 12. It was established that, under these conditions, the coefficient C12 of correlation between the radiation intensities from different wells is close to unity. It is shown that, as the barrier width increases (l>200 Å), the coefficient C12 decreases, changes sign, and goes to zero at l=400 Å.  相似文献   

9.
Even though composite fermions in the fractional quantum Hall liquid are well established, it is not yet known up to what energies they remain intact. We probe the high-energy spectrum of the 1/3 liquid directly by resonant inelastic light scattering, and report the observation of a large number of new collective modes. Supported by our theoretical calculations, we associate these with transitions across two or more composite fermions levels. The formation of quasiparticle levels up to high energies is direct evidence for the robustness of topological order in the fractional quantum Hall effect.  相似文献   

10.
Strong resonant enhancements of inelastic light scattering from the long wavelength inter-Landau level magnetoplasmon and the intra-Landau level spin wave excitations are seen for the fractional quantum Hall state at ν=1/3. The energies of the sharp peaks (FWHM 0.2 meV) in the profiles of resonant enhancement of inelastic light scattering intensities coincide with the energies of photoluminescence bands assigned to negatively charged exciton recombination. To interpret the observed enhancement profiles, we propose three-step light scattering mechanisms in which the intermediate resonant transitions are to states with charged excitonic excitations.  相似文献   

11.
The effect of the Coulomb interaction in the intermediate state on the inelastic resonant process of light scattering by electrons in quantum rings in a magnetic field normal to the ring plane is investigated theoretically. By way of examples, one- and two-electron quantum rings are considered.  相似文献   

12.
Inelastic scattering processes of two-dimensional electron gas (2DEG) have been investigated in a inverted GaAs/n-AlGaAs heterojunction with self-organized InGaAs quantum dots (QDs) embedded near the 2DEG channel where the electron population in the QDs is controllable by the gate voltage Vg. By analyzing magnetoresistance, the inelastic scattering time τε have been evaluated as functions of Vg at 0.6, 0.8, 1.2, and 1.7 K. It is found that τε increases with Vg below 0.8 K and decreases above 1.2 K, which suggests that the dominant scattering mechanisms below 0.8 K and above 1.2 K are different. To interpret this behavior, we have calculated the inelastic scattering time theoretically. It is found that the experimental data are well explained by a theoretical model where a 2D electron is considered to be inelastically scattered both by the other 2D electrons and by the trapped electrons in QDs. It is also found that the 2DEG–2DEG scattering is dominant at low temperature, while the 2DEG-QDs scattering becomes important as the temperature increases.  相似文献   

13.
It was found that a stepwise increase in the interband light intensity causes an increase in the low-temperature lateral photoconductivity of a Si/Ge structure containing six layers of germanium quantum dots in a silicon host. As was previously observed in structures with a single layer of quantum dots, strengthening of the driving field results in the step positions shifting to lower light intensities. This effect was also found to take place under a dark driving field. The results are discussed in terms of the percolation theory of nonequilibrium electrons localized in the states between quantum dots.  相似文献   

14.
Coherence properties of primary partially coherent radiations (light, X-rays and particles) elastically scattered from a 3D object consisting of a collection of electrons and nuclei are analyzed in the Fresnel diffraction region and in the far field. The behaviour of the cross-spectral density of the scattered radiation transverse and along to the local direction of propagation is shown to be described by respectively the 3D Fourier and Fresnel transform of the generalized radiance function of a scattering secondary source associated with the object. A relativistic correct expression is derived for the mutual coherence function of radiation which takes account of the dispersive propagation of particle beams in vacuum. An effect of the spatial coherence of radiation on the temporal one is found; in the Fresnel diffraction region, in distinction to the field, both the longitudinal spatial coherence and the spectral width of radiation affect the longitudinal coherence. A solution of the 3D inverse scattering problem for partially coherent radiation is presented. It is shown that squared modulus of the scattering potential and its 2D projections can be reconstructed from measurements of the modulus and phase of the degree of transverse spatial coherence of the scattered radiation. The results provide a theoretical basis for new methods of image formation and structure analysis in X-ray, electron, ion, and neutron optics.  相似文献   

15.
Radiation properties of three and four atoms continuously pumped by an incoherent excitation mechanism are investigated by using Lehmberg's master equation and the quantum fluctuation-regression theorem. For proper configurations we found in comparison with independent atoms simultaneously (i) an enlargement of the radiation rate, (ii) a spectral narrowing and (iii) a reduction of intensity fluctuations.  相似文献   

16.
In the two-dimensional electron systems with strong coupling in MgZnO/ZnO heterostructures, the thermal behavior of Ising quantum Hall ferromagnets at the filling factor ν = 2 has been studied. The spin polarization of Hall ferromagnets has been detected by measuring the signal related to the inelastic light scattering by intrasubband spin excitons. A stepwise change in the spin polarization at the phase transition at the filling factors ν = 2,3, and 4 in the heterostructures with different electron densities has been observed. The thermal stability of the Hall ferromagnetic phases at ν = 2 has been studied and the Curie temperature has been estimated. It has been shown that the Curie temperature is determined by the formation energy for domain walls in the Ising quantum Hall ferromagnets.  相似文献   

17.
Magnetorotons in the dispersions of collective gap excitation modes of fractional quantum Hall liquids are measured in resonant inelastic light scattering experiments. Two deep magnetoroton minima are observed at nu = 2/5, while a single deep minimum is resolved at nu = 1/3. The observations are the first evidence of multiple roton minima in gap excitations of the quantum liquids. The results support Chern-Simons and composite fermion calculations that predict multiple roton minima for states with nu>1/3.  相似文献   

18.
We report observation of intrinsic inverse spin Hall effect in undoped GaAs multiple quantum wells with a sample temperature of 10 K. A transient ballistic pure spin current is injected by a pair of laser pulses through quantum interference. By time resolving the dynamics of the pure spin current, the momentum relaxation time is deduced, which sets the lower limit of the scattering time between electrons and holes. The transverse charge current generated by the pure spin current via the inverse spin Hall effect is simultaneously resolved. We find that the charge current is generated well before the first electron-hole scattering event. Generation of the transverse current in the scattering-free ballistic transport regime provides unambiguous evidence for the intrinsic inverse spin Hall effect.  相似文献   

19.
In the last few years renewed attention has been paid to the study of light scattering from random media. This is due to the recent discovery of a phenomenon that dynamic light scattering from a fluctuating random medium may produce shifts of spectral lines, even when the source and the scattering medium are at rest relative to the observer. It has also been demonstrated that a similar phenomenon may occur in static light scattering from spatially random media without dynamic fluctuations. By the well-known analogy between the processes of scattering and radiation, these phenomena in scattering are found to be closely related to the correlation-induced spectral changes in the coherence theory which are often referred to as the Wolf effect. In this paper some recent developments are reviewed on research regarding the phenomena of changes in the spectrum of light induced by scattering from random media. Emphasis is placed on a number of up-to-date attempts for elucidating the effects of multiple scattering on these phenomena.This review was presented as an invited paper at the Symposium on Spectral Effects in Collective Phenomena organized as a satellite meeting of the Seventh Rochester Conference on Coherence and Quantum Optics, June 7–10 1995 (Rochester, NY).  相似文献   

20.
We theoretically analyze the collective oscillations of 2D electrons in nanotubes. In the presence of a magnetic field parallel to the tube axis, the plasmon frequencies undergo Aharonov-Bohm oscillations. The effect can manifest itself in infrared absorption and in Raman scattering. We calculate the cross sections for inelastic light scattering by plasmons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号