首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Passive noise control devices for jet flows, such as chevron nozzles, have been studied for a long time due to their large application in turbofan engines. The main purpose of their usage is the reduction of low-frequency noise generation and thus decreasing the noise perceived at the far field. This work is a numerical study of acoustic noise generated by jet flow operating at Mach number 0.9 and Reynolds number 1.38 × 106, considering two chevron nozzle geometries that differ from each other by the penetration angle into the flow. The main aim was to demonstrate that Reynolds averaged Navier Stokes (RANS)-based methods are reliable means to obtain acoustical noise predictions for the industry with a considerably low computational cost. In order to achieve this objective, computational fluid dynamics (CFD) RANS simulations were performed with a cubic k-ɛ model and the acoustic noise spectrum for different angles of radiation was obtained via the Lighthill ray-tracing (LRT) method. The numerical results for the acoustic and flow fields were seen to be in reasonable agreement with the experimental data, suggesting that this methodology can be used as a fast and useful option to predict acoustic noise of jet flows from chevron nozzles.  相似文献   

2.
The influence of the cooling water on the vibration mode and damping characteristics of an engine was evaluated through experimental and simulation methods. The wet mode method of the fluid–structure interaction field was applied in numerical analysis, which led to several significant conclusions. Several additional fluid related modes were present when the effect of cooling water was considered. Meanwhile, the frequencies of other modes were almost the same. On the other hand, the damping characteristics of an engine were changed while the cooling water was used. For Rayleigh damping, the cooling water effect has made the mass matrix scale factor α nearly double and the stiffness matrix scale factor β almost unchanged. The engine surface vibration acceleration magnitude was calculated by means of the multi-body dynamic analysis. It was shown that the calculated vibration acceleration magnitude was close to the measured one when the cooling water was taken into account. Furthermore, acoustic simulation results were estimated by Boundary Element Method, which revealed that the sound power level of the radiation noise of most engine components was lower than that with the fluid structure interaction model being applied in the engine block modeling. The overall sound power level of the whole engine radiation noise was increased by 3.6 dB when the effect of the cooling water was considered, which demonstrated that the effect of the cooling water on the engine vibro-acoustic characteristics should not be neglected during the computation. This paper has disclosed the influences of the cooling water on the engine structural modes, damping, sound power level of the engine radiation noise and a systematic approach for evaluation of the influences.  相似文献   

3.
Intermittent nystagmus is a special kind of nystagmus with an irregular attack time. Its pathogenesis remains unclear. Recently, nonlinear dynamic methods used to explore the mechanisms responsible for intermittent nystagmus have received increased attention. The current study examines the dynamic properties of the bistable horizontal saccadic oculomotor system driven by colored noise. The most probable amplitude, stationary probability density of response, and signal-to-noise ratio curves with different parameters are obtained through stochastic numerical simulation. Then, the stochastic P bifurcation and coherent resonance phenomenon of the saccadic oculomotor system are analyzed. Results indicate that inhibition strength, noise intensity, or correlation time could induce stochastic P bifurcation, which may explain the development of intermittent nystagmus. Further, it is found that intermittent nystagmus can be suppressed by increasing inhibition strength, and that correlation time and noise intensity can lead to coherence resonance.  相似文献   

4.
5.
Piezoresistive cantilevers with dimensions of 200×50×1.8μm3 have been fabricated from polycrystalline silicon using reactive ion etching (RIE) and back etching processes. Full Wheatstone bridges have been designed symmetrically on-chip, with two resistors placed on the cantilevers and two resistors on the substrate. The differential measurements of the two cantilevers can reduce the thermal shift of the signal in the system and the external noise in the laboratory. The characteristics of the fabricated cantilevers have been analysed by measuring the noise and the sensitivity. The measured noise spectra show that the 1/f noise is the dominant noise source at low frequencies. With the linear relation between 1/f noise and bias voltages, the Hooge factor (α) was calculated to be 0.0067. The 1/f noise was explained in terms of a lattice scattering model, which occurs in the depletion region of the grains. The displacement sensitivity of the cantilevers ((ΔR)/Rz-1) was calculated to be 1×10-6nm-1 by measuring the resistance change and the vertical deflection of the cantilever. The gauge factor of the piezoresistive cantilever was calculated to be 19. At a 3 V bias voltage and 1000 Hz measurement bandwidth, 1 nm of minimum detectable deflection has been obtained.  相似文献   

6.
A Monte Carlo method is presented for simulating rough surfaces with the fractal behavior. The simulation is based on power-law size distribution of asperity diameter and self-affine property of roughness on surfaces. A probability model based on random number for asperity sizes is developed to generate the surfaces. By iteration, this method can be used to simulate surfaces that exhibit the aforementioned properties. The results indicate that the variation of the surface topography is related to the effects of scaling constant G and the fractal dimension D of the profile of rough surface. The larger value of D or smaller value of G signifies the smoother surface topography. This method may have the potential in prediction of the transport properties (such as friction, wear, lubrication, permeability and thermal or electrical conductivity, etc.) on rough surfaces.  相似文献   

7.
In this paper we develop a robust implicit Monte Carlo (IMC) algorithm based on more accurately updating the linearized equilibrium radiation energy density. The method does not introduce oscillations in the solution and has the same limit as Δt→∞Δt as the standard Fleck and Cummings IMC method. Moreover, the approach we introduce can be trivially added to current implementations of IMC by changing the definition of the Fleck factor. Using this new method we develop an adaptive scheme that uses either standard IMC or the modified method basing the adaptation on a zero-dimensional problem solved in each cell. Numerical results demonstrate that the new method can avoid the nonphysical overheating that occurs in standard IMC when the time step is large. The method also leads to decreased noise in the material temperature at the cost of a potential increase in the radiation temperature noise.  相似文献   

8.
郭晛  章定国  陈思佳 《物理学报》2017,66(16):164501-164501
以柔性梁在重力作用下绕转动铰做大范围定轴转动,并与刚性平面发生碰撞这一动力学过程为例,对Hilber-Hughes-Taylor(HHT-α)法在求解含接触约束的柔性多体系统动力学方程时的数值特性进行了研究.系统运动过程的全局动力学仿真由常微分方程组和微分-代数方程组的数值求解构成.柔性梁在无碰撞阶段系统动力学方程是一组常微分方程组.采用接触约束法模拟接触约束过程,系统的动力学方程为指标3的微分-代数方程组.采用HHT-α法对的该微分-代数方程组进行求解,并与Baumgarte违约修正法进行比较.分析了HHT-α法自由参数和违约修正常数对计算效率、动力学响应和系统机械能的影响,并对数值积分方法对模态截断数的敏感度以及速度约束和加速度约束的违约程度进行了分析.结果表明,违约修正常数对仿真结果影响非常明显,而HHT-α法的自由参数α对动力学响应的影响较小,从而避免了违约修正常数对数值积分结果的影响.HHT-α法的自由参数α可以消除碰撞高频模态的影响.  相似文献   

9.
A device of high sensitivity for the investigation of as well the angular as the energy distribution of an electron diffraction pattern is described. Consisting of an energy analyzer of the retarding field type in connection with scintillator and photomultiplier the device allowed to measure a minimum current of 10?17 A. This limit of detectability was only determined by the noise of the initial electron beam and a signal to noise ratio of 5. The energy resolution of the device was only limited by the thermal spread of the beam. By means of a deflection condensor the diffraction pattern was shifted over the diaphragm of the analyzer.  相似文献   

10.
3-cube-based Förster resonance energy transfer (FRET) microscopy, a sensitized acceptor FRET quantification method, has been widely used to visualize dynamic protein–protein interaction in living cells. Determining the FRET sensitized-quenching transition factor (G factor) of a particular donor-acceptor pair and optical system is crucial for 3-cube FRET quantification. We here improved the acceptor photobleaching-based G factor determination method (termed as mPb-G) and the two-plasmid-based G factor determination method (termed as mTP-G) for rapid and reliable measurement of the G factor. mTP-G method determines G factor by simultaneously detecting three images of cells exclusively expressing each of two tandem constructs with multiple donors and multiple acceptors. This method circumvents switchover of the cells exclusively expressing each of the two constructs. mPb-G method images G factor by detecting three images of cells expressing a donor-acceptor tandem FRET construct before and after partially photobleaching acceptor. We performed the two methods on our dual-channel wide-field FRET microscope to obtain reliable G factor, and also measured the FRET efficiency and acceptor-to-donor concentration ratio of tandem constructs with different acceptor-donor stoichiometries in living HepG2 cells. mTP-G and mPb-G methods provide two simple and reliable tools for determining the G factor, in turn, quantitatively measuring FRET signal and monitoring dynamic biochemical processes in living cells.  相似文献   

11.
In magneto-optical Kerr measurements of the Barkhausen noise, a magnetization jump ΔM due to a domain reversal produces a variation ΔI of the intensity of a laser beam reflected by the sample, which is the physical quantity actually measured. Due to the non-uniform beam intensity profile, the magnitude of ΔI depends both on ΔM and on its position on the laser spot. This could distort the statistical distribution pI) of the measured ΔI with respect to the true distribution pM) of the magnetization jumps ΔM. In this work the exact relationship between the two distributions is derived in a general form, which will be applied to some possible beam profiles. It will be shown that in most cases the usual Gaussian beam produces a negligible statistical distortion. Moreover, for small ΔI the noise of the experimental setup can also distort the statistical distribution pI), by erroneously rejecting small ΔI as noise. This effect has been calculated for white noise, and it will be shown that it is relatively small but not totally negligible as the measured ΔI approaches the detection limit.  相似文献   

12.
为了提高高动态环境下星敏感器的质心提取精度,提出了一种基于自适应滤波的在轨校正方法。该方法能够适应角速度变化的星敏感器,自适应的调整校正矩阵。使用提出的基于时空相关性的噪声估计滤波器跟随星点窗口实时更新校正矩阵,对星点准确校正。与传统地面校正方法相比,本文方法不仅减少了成本,且实时更新校正矩阵,校正更加可靠。通过实验验证了所提算法在高动态下对星敏感器校正的有效性,与现有只能低速星敏感器(≤0.1°/s)的在轨校正方法相比,本文方法能适应更大范围的角速度(0~3°/s),准确的校正高动态星敏感器,提高质心提取精度,对提高星敏感器的动态性能具有指导意义。  相似文献   

13.
胡格丽  倪志鹏  王秋良 《物理学报》2014,63(1):18301-018301
在磁共振成像系统的工作过程中,噪声主要是由梯度线圈系统产生的.梯度线圈置于高均匀度超导磁体的室温孔内,并工作于脉冲状态,频繁的开启和关闭会使线圈中电流急剧随时间变化,变化的电流导致线圈受到变化的洛伦兹力作用,从而产生振动,这种高频振动所发出的噪声会对病人产生刺激,严重时甚至会对病人的听觉神经产生损伤.梯度场的场强越强、切换速度越快,所产生的噪声就越大.降低噪声的最根本方法是通过有效的梯度线圈设计,降低洛伦兹力的空间分布.本文针对纵向梯度线圈,在原经典目标场设计方法基础上,加入对振动参量,从而能够有效地降低线圈工作时所产生的噪声.其具体方法是将振动控制函数作为约束条件,通过目标场法建立数学模型,利用MATLAB进行电磁验算.计算结果表明,所提数学模型可有效地降低线圈振动的最大振幅.  相似文献   

14.
The vector ε and ρ extrapolation methods are applied in accelerating the convergence of the Richardson-Lucy (R-L) algorithm and its damped version. The theory and implementation are discussed in detail, and relevant numerical results are given, including the cases of noise-free images and images corrupted by the Poisson noise. The results show that the vector ε and ρ extrapolations of 9 orders can speed the convergence quite efficiently, and the ρ(9) method is more powerful than the ε(9) method for noisy degraded images. The extra computation burden due to the extrapolation is limited, and is well paid back by the accelerated convergence. The performances of these two methods are compared with the famous automatic acceleration method. For noise-free degraded images, the vector ε(9) and ρ(9) methods are more stable than the automatic method. For noisy degraded images, the damped R-L algorithm accelerated by vector ρ(9) or automatic methods is more powerful, and the instability of the automatic method is restrained by the damping strategy. We explain the instability of the method in accelerating the normal R-L algorithm by the numerical noise due to its frequent applications in the run.  相似文献   

15.
Issues concerning the design and use of large-scale silencers are more prevalent today then ever before. With the increased use of large industrial machinery (such as gas turbines) and the increase in public awareness and concern for noise control, the desire to be able to properly design silencers for specific applications is increasing. Even today, most silencer design is performed by simply modifying existing designs without full confidence of the new performance characteristics. Due to the size and expense of these silencers, it would be beneficial to have means to predict the insertion loss (IL) or transmission loss (TL) characteristics at the design stage. To properly accomplish this, many factors such as geometry, absorptive material properties, flow effects, break out noise, and self-generated noise must be considered. The use of the finite element method (FEM) and the boundary element method (BEM) can aid in the prediction and design. This paper examines three of the different methods used in calculation of TL values; namely the “traditional” laboratory method, the 4-pole transfer matrix method and the 3-point method. A comparison of these methods based on such criteria as accuracy, computation time, and ease of use was conducted. In addition, the idiosyncrasies and problems encountered during implementation are presented. The conclusions were that the FEM is better suited for this kind of application and that the 3-point method was the fastest method and was easier to use than the 4-pole method.  相似文献   

16.
17.
In nonlinear electrodynamics a photon does not follow null geodesics of background geometry, but moves along null geodesics of a corresponding effective geometry. Therefore, in the strong deflection limit, in order to study the gravitational lensing of the regular electrically charged black holes obtained by coupling general relativity to nonlinear electrodynamics, one should firstly obtain the corresponding effective geometry, which is a necessary and key step. I obtain the deflection angle of the photon in the strong deflection limit, and further calculate the angular position and magnification of relativistic images. It is found that, the electric charge has significant effect on the gravitational lensing of regular black holes. With the increase of the electric charge q, the angular position of the relativistic images \(\theta _{\infty }\) and the relative magnification \(\mathcal {R}_{m}\) as a function of q decrease, while the angular separation between the outermost relativistic image and the others \(\mathcal {S}\) as a function of q increases. I also discuss the measurement of observables for the black hole at the center of our Galaxy in the cases of regular electrically charged black hole effective metrics.  相似文献   

18.
From a mathematical perspective, radiation hydrodynamics can be thought of as a system of hyperbolic balance laws with dual multiscale behavior (multiscale behavior associated with the hyperbolic wave speeds as well as multiscale behavior associated with source term relaxation). With this outlook in mind, this paper presents a hybrid Godunov method for one-dimensional radiation hydrodynamics that is uniformly well behaved from the photon free streaming (hyperbolic) limit through the weak equilibrium diffusion (parabolic) limit and to the strong equilibrium diffusion (hyperbolic) limit. Moreover, one finds that the technique preserves certain asymptotic limits. The method incorporates a backward Euler upwinding scheme for the radiation energy density Er and flux Fr as well as a modified Godunov scheme for the material density ρ, momentum density m, and energy density E.  相似文献   

19.
Noise from road traffic propagates to acoustically shielded areas as roadside courtyard by multiple reflection and diffraction paths in a complex three-dimensional (3D) environment. The computation of noise levels and assessment of candidate noise mitigation measures for these areas has up to now been based upon two-dimensional (2D) geometrical assumptions. Here, a recently developed efficient wave-based method, the extended Fourier pseudospectral time-domain (PSTD) method, is used to investigate the necessity of a 3D model. For frequencies up to 500 Hz and low traffic velocities of 30 km/h and 50 km/h, a road traffic noise configuration of an urban street canyon with or without cross streets and a closed roadside courtyard is compared to the 2D configuration as studied previously. It can be concluded that the contribution of distant sources is overpredicted by the 2D configuration. As noise mitigation measures, additional façade absorption, façade screens and roof screens have been studied. Results show that the 2D configuration underpredicts the effect of façade mitigation measures, by maximum 1.5 dB(A) for the absorption case and 4.4 dB(A) for the screens case. The effect of roof screens is overpredicted up to 1.7 dB(A). Given these deviations and the found deviations between the 3D configurations of street canyon with and without cross streets, the need for a 3D model can be concluded to be strongly configuration dependent. The 3D model is finally used to investigate the effect of a façade opening to the courtyard, which could lead to up to 10 dB(A) higher noise levels as compared to the noise propagating over the roof level and may prohibit the use of these courtyards as quiet areas. Absorption in the façade opening can significantly limit this negative effect.  相似文献   

20.
Extended supergravity theories predict the existence of vector and scalar bosons, besides the graviton, which in the static limit couple to the mass. An example is the graviphoton, leading to antigravity. If these bosons have a small mass (?10?4 eV), an observable Yukawa term would be present in the gravitational potential in the newtonian limit. This can be parametrized by a distance dependent effective gravitational “constant” G(r). Defining G0 = G(10 cm) and Gc = G(103 km), the comparison between theory and observations of the white dwarf Sirius B results in GcG0 = 0.98 ± 0.08.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号