首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
This paper presents a two-variable first-order shear deformation theory considering in-plane rotation for bending, buckling and free vibration analyses of isotropic plates. In recent studies, a simple first-order shear deformation theory (S-FSDT) was developed and extended. It has only two variables by separating the deflection into bending and shear parts while the conventional first-order shear deformation theory (FSDT) has three variables. However, the S-FSDT provides incorrect predictions for the transverse shear forces on the insides and the twisting moments at the boundaries except simply supported plates since it does not consider in-plane rotation. The present theory also has two variables but considers in-plane rotation such that it is able to correctly predict the responses of plates with any boundary conditions. Analytical solutions are obtained for rectangular plates with two opposite edges that are simply supported, with the other edges having arbitrary boundary conditions. Numerical results of deflections, stress resultants, buckling loads and natural frequencies are presented with the FSDT, the S-FSDT and the present theory. Comparative studies demonstrate the effects of in-plane rotation and the accuracy of the present theory in predicting the bending, buckling and free vibration responses of isotropic plates.  相似文献   

2.
Closed-form solutions for free vibration analysis of orthotropic plates are obtained in this paper based on two variable refined plate theory. The theory, which has strong similarity with classical plate theory in many aspects, accounts for a quadratic variation of the transverse shear strains across the thickness, and satisfies the zero traction boundary conditions on the top and bottom surfaces of the plate without using shear correction factors. Equations of motion are derived from the Hamilton’s principle. The closed-form solutions of rectangular plates with two opposite edges simply supported and the other two edges having arbitrary boundary conditions are obtained by applying the state space approach to the Levy-type solution. Comparison studies are performed to verify the validity of the present results. The effects of boundary condition, and variations of modulus ratio, aspect ratio, and thickness ratio on the natural frequency of orthotropic plates are investigated and discussed in detail.  相似文献   

3.
基于偶应力理论,建立了适用于微纳米结构的Mindlin板理论。考虑横向剪切变形和材料的尺度效应并引入长度尺寸参数,推导了各向同性微纳米Mindlin板的本构方程。根据板的平衡条件,进一步推导出用位移函数和转角函数表示的板的屈曲和振动控制方程。通过对位移和转角变量进行空间和时间域上的分离,得出了四边简支(SSSS)和对边简支、对边固支(SCSC)两种边界情况下微纳米板的屈曲和振动问题的解析解。然后利用MATLAB软件进行算例分析,获得了不同尺寸参数、长宽比、厚长比等情况下板的临界屈曲荷载和固有频率。研究结果与已有文献中的结果以及ABAQUS有限元仿真解进行对比,结果表明,不同参数下的三种方法得到的结果均十分接近。算例分析发现,尺度效应对屈曲载荷和固有频率都有显著影响。  相似文献   

4.
In this article, an analytical approach for buckling analysis of thick functionally graded rectangular plates is presented. The equilibrium and stability equations are derived according to the higher-order shear deformation plate theory. Introducing an analytical method, the coupled governing stability equations of functionally graded plate are converted into two uncoupled partial differential equations in terms of transverse displacement and a new function, called boundary layer function. Using Levy-type solution these equations are solved for the functionally graded rectangular plate with two opposite edges simply supported under different types of loading conditions. The excellent accuracy of the present analytical solution is confirmed by making some comparisons of the present results with those available in the literature. Furthermore, the effects of power of functionally graded material, plate thickness, aspect ratio, loading types and boundary conditions on the critical buckling load of the functionally graded rectangular plate are studied and discussed in details. The critical buckling loads of thick functionally graded rectangular plates with various boundary conditions are reported for the first time and can be used as benchmark.  相似文献   

5.
In this paper, exact closed-form solutions in explicit forms are presented for transverse vibration analysis of rectangular thick plates having two opposite edges hard simply supported (i.e., Lévy-type rectangular plates) based on the Reddy’s third-order shear deformation plate theory. Two other edges may be restrained by different combinations of free, soft simply supported, hard simply supported or clamped boundary conditions. Hamilton’s principle is used to derive the equations of motion and natural boundary conditions of the plate. Several comparison studies with analytical and numerical techniques reported in literature are carried out to demonstrate accuracy of the present new formulation. Comprehensive benchmark results for natural frequencies of rectangular plates with different combinations of boundary conditions are tabulated in dimensionless form for various values of aspect ratios and thickness to length ratios. A set of three-dimensional (3-D) vibration mode shapes along with their corresponding contour plots are plotted by using exact transverse displacements of Lévy-type rectangular Reddy plates. Due to the inherent features of the present exact closed-form solution, the present findings will be a useful benchmark for evaluating the accuracy of other analytical and numerical methods, which will be developed by researchers in the future.  相似文献   

6.
The main objective of this research work is to present analytical solutions for free vibration analysis of moderately thick rectangular plates, which are composed of functionally graded materials (FGMs) and supported by either Winkler or Pasternak elastic foundations. The proposed rectangular plates have two opposite edges simply-supported, while all possible combinations of free, simply-supported and clamped boundary conditions are applied to the other two edges. In order to capture fundamental frequencies of the functionally graded (FG) rectangular plates resting on elastic foundation, the analysis procedure is based on the first-order shear deformation plate theory (FSDT) to derive and solve exactly the equations of motion. The mechanical properties of the FG plates are assumed to vary continuously through the thickness of the plate and obey a power law distribution of the volume fraction of the constituents, whereas Poisson’s ratio is set to be constant. First, a new formula for the shear correction factors, used in the Mindlin plate theory, is obtained for FG plates. Then the excellent accuracy of the present analytical solutions is confirmed by making some comparisons of the results with those available in literature. The effect of foundation stiffness parameters on the free vibration of the FG plates, constrained by different combinations of classical boundary conditions, is also presented for various values of aspect ratios, gradient indices, and thickness to length ratios.  相似文献   

7.
A new sinusoidal shear deformation theory is developed for bending, buckling, and vibration of functionally graded plates. The theory accounts for sinusoidal distribution of transverse shear stress, and satisfies the free transverse shear stress conditions on the top and bottom surfaces of the plate without using shear correction factor. Unlike the conventional sinusoidal shear deformation theory, the proposed sinusoidal shear deformation theory contains only four unknowns and has strong similarities with classical plate theory in many aspects such as equations of motion, boundary conditions, and stress resultant expressions. The material properties of plate are assumed to vary according to power law distribution of the volume fraction of the constituents. Equations of motion are derived from the Hamilton’s principle. The closed-form solutions of simply supported plates are obtained and the results are compared with those of first-order shear deformation theory and higher-order shear deformation theory. It can be concluded that the proposed theory is accurate and efficient in predicting the bending, buckling, and vibration responses of functionally graded plates.  相似文献   

8.
In this paper, an efficient and simple refined theory is presented for buckling analysis of functionally graded plates. The theory, which has strong similarity with classical plate theory in many aspects, accounts for a quadratic variation of the transverse shear strains across the thickness and satisfies the zero traction boundary conditions on the top and bottom surfaces of the plate without using shear correction factors. The mechanical properties of functionally graded material are assumed to vary according to a power law distribution of the volume fraction of the constituents. Governing equations are derived from the principle of minimum total potential energy. The closed-form solutions of rectangular plates are obtained. Comparison studies are performed to verify the validity of present results. The effects of loading conditions and variations of power of functionally graded material, modulus ratio, aspect ratio, and thickness ratio on the critical buckling load of functionally graded plates are investigated and discussed.  相似文献   

9.
A solution for the elastic and inelastic local buckling of flat rectangular plates with centerline boundary conditions subjected to non-uniform in-plane compression and shear stress is presented. The loaded edges are simply supported, the longitudinal edges may have any boundary conditions and the centerline is simply supported with a variable rotational stiffness. The Galerkin method, an effective method for solving differential equations, is applied to establish an eigenvalue problem. In order to obtain plate buckling coefficients, combined trigonometric and polynomial functions that satisfy the boundary conditions are used. The method is programmed, and several numerical examples including elastic and inelastic local buckling, are presented to illustrate the scope and efficacy of the procedure. The variation of buckling coefficients with aspect ratio is presented for various stress gradient ratios. The solution is applicable to stiffened plates and the flange of the I-shaped beams that are subjected to biaxial bending or combined flexure and torsion and shear stresses, and is important to estimate the reduction in elastic buckling capacity due to stress gradient.  相似文献   

10.
Recently, the present authors proposed a simple mixed Ritz-differential quadrature (DQ) methodology for free and forced vibration, and buckling analysis of rectangular plates. In this technique, the Ritz method is first used to discretize the spatial partial derivatives with respect to a coordinate direction of the plate. The DQ method is then employed to analogize the resulting system of ordinary or partial differential equations. The mixed method was shown to work well for vibration and buckling problems of rectangular plates with simple boundary conditions. But, due to the use of conventional Ritz method in one coordinate direction of the plate, the geometric boundary conditions of the problem can only be satisfied in that direction. Therefore, the conventional mixed Ritz-DQ methodology may encounter difficulties when dealing with rectangular plates involving adjacent free edges and skew plates. To overcome this difficulty, this paper presents a modified mixed Ritz-DQ formulation in which all the natural boundary conditions are exactly implemented. The versatility, accuracy and efficiency of the proposed method for free vibration analysis of thick rectangular and skew plates are tested against other solution procedures. It is revealed that the proposed method can produce highly accurate solutions for the natural frequencies of thick rectangular plates involving adjacent free edges and skew plates using a small number Ritz terms and DQ sampling points.  相似文献   

11.
基于经典板理论(CPT)、一阶剪切变形板理论(FPT)以及Reddy三阶剪切变形板理论(RPT)之间,圆板轴对称特征值问题在数学上的相似性,研究了不同理论之间圆板特征值间的解析关系.将特征值问题的求解转化为代数方程的求解,并导出了不同理论之间圆板特征值的显式精确解析关系.从而,只要已知圆板特征值(临界屈曲载荷和固有频率)的经典结果,便很容易从这些解析关系中得到一阶和三阶理论下圆板特征值的相应结果,这便于工程应用,同时也可检验一阶和三阶理论下板特征值的数值结果的有效性、收敛性以及精确性等问题.  相似文献   

12.
常用的对称迭层板为各向异性板.根据平面应力问题的基本方程精确地用应力函数解法求得了各向异性板的一般解析解.推导出平面内应力和位移的一般公式,其中积分常数由边界条件来决定.一般解包括三角函数和双曲函数组成的解,它能满足4个边为任意边界条件的问题.还有代数多项式解,它能满足4个角的边界条件.因此一般解可用以求解任意边界条件下的平面应力问题.以4边承受均匀法向和切向载荷以及非均匀法向载荷的对称迭层方板为例,进行了计算和分析.  相似文献   

13.
England (2006) [13] proposed a novel method to study the bending of isotropic functionally graded plates subject to transverse biharmonic loads. His method is extended here to functionally graded plates with materials characterizing transverse isotropy. Using the complex variable method, the governing equations of three plate displacements appearing in the expansions of displacement field are formulated based on the three-dimensional theory of elasticity for a transverse load satisfying the biharmonic equation. The solution may be expressed in terms of four analytic functions of the complex variable, in which the unknown constants can be determined from the boundary conditions similar to that in the classical plate theory. The elasticity solutions of an FGM rectangular plate with opposite edges simply supported under 12 types of biharmonic polynomial loads are derived as appropriate sums of the general and particular solutions of the governing equations. A comparison of the present results for a uniform load with existing solutions is made and good agreement is observed. The influence of boundary conditions, material inhomogeneity, and thickness to length ratio on the plate deflection and stresses for the load x2yq are studied numerically.  相似文献   

14.
It is of significance to explore benchmark analytic free vibration solutions of rectangular thick plates without two parallel simply supported edges, because the classic analytic methods are usually invalid for the problems of this category. The main challenge is to find the solutions meeting both the governing higher order partial differential equations (PDEs) and boundary conditions of the plates, i.e., to analytically solve associated complex boundary value problems of PDEs. In this letter, we extend a novel symplectic superposition method to the free vibration problems of clamped rectangular thick plates, with the analytic frequency solutions obtained by a brief set of equations. It is found that the analytic solutions of clamped plates can simply reduce to their variants with any combinations of clamped and simply supported edges via an easy relaxation of boundary conditions. The new results yielded in this letter are not only useful for rapid design of thick plate structures but also provide reliable benchmarks for checking the validity of other new solution methods.  相似文献   

15.
付宝连 《应用数学和力学》2015,36(10):1019-1034
提出了有限位移理论三维线弹性力学的功的互等定理.基于这一定理,导出了大挠度弯曲矩形板的功的互等定理.同时,应用简化矩形板的定理,直接得到了大挠度板条的功的互等定理.作为应用,计算了在均载作用下两端固定大挠度板条的弯曲和在均载作用下4边固定大挠度矩形板的弯曲.计算表明,根据弯曲薄板大挠度功的互等定理,大挠度弯曲矩形板可应用小挠度的相应基本解得以简单解决.  相似文献   

16.
分析了流固冲击下加筋板的非线性弹性动态屈曲.考虑板与筋的膜力,忽略面内位移,运用Hamilton变分原理,得出非线性控制方程,采用双级数形式的挠度假设,由Galerkin方法得到离散方程组,根据Budiansky-Roth(B-R)曲线,判断加筋板的动态屈曲.  相似文献   

17.
In this study, the static response is presented for a simply supported functionally graded rectangular plate subjected to a transverse uniform load. The generalized shear deformation theory obtained by the author in other recent papers is used. This theory is simplified by enforcing traction-free boundary conditions at the plate faces. No transversal shear correction factors are needed because a correct representation of the transversal shearing strain is given. Material properties of the plate are assumed to be graded in the thickness direction according to a simple power-law distribution in terms of the volume fractions of the constituents. The equilibrium equations of a functionally graded plate are given based on a generalized shear deformation plate theory. The numerical illustrations concern bending response of functionally graded rectangular plates with two constituent materials. The influences played by transversal shear deformation, plate aspect ratio, side-to-thickness ratio, and volume fraction distributions are studied. The results are verified with the known results in the literature.  相似文献   

18.
An evolutionary method for optimization of plate buckling resistance   总被引:9,自引:0,他引:9  
Optimization of plate buckling resistance is very complicated, because the in-plane stress resultants in the prebuckled state of a plate are functions of thickness distribution. This paper discusses the problem of finding the optimum thickness distribution of isotropic plate structures, with a given volume and layout, that would maximise the buckling load. A simple numerical method using the finite-element analysis is presented to obtain the optimum thickness distribution. Optimum designs of compression-loaded rectangular plates with different boundary conditions and plate aspect ratios are obtained by using the proposed method. Optimum designs from earlier studies and the methods of buckling analysis used to attain these results are discussed and compared with the designs from the proposed method. This paper also examines the reliability of the optimality criterion generally used for plate buckling optimization, which is based on the uniform strain energy density.  相似文献   

19.
根据各向异性矩形薄板自由振动横向位移函数的微分方程建立了一般性的解析解.该一般解包括三角函数和双曲线函数组成的解,它能满足4个边为任意边界条件的问题.还有代数多项式和双正弦级数解,它能满足4个角的边界条件问题.因此,这一解析解可用于精确地求解具有任意边界条件的各向异性矩形卞的振动问题.解中的积分常数可由4边和4角的边界条件来确定.由此得出的齐次线性代数方程系数矩阵行列式等于零可以求得各阶固有频率及其振型,以四边平夹的对称角铺设复合材料迭层板为例进行了计算和讨论.  相似文献   

20.
三边夹紧一边自由的矩形厚板的弯曲   总被引:5,自引:2,他引:3  
利用厚板的Reissner理论中的广义简支边概念[1]得到了三边夹紧一边自由受均布横向载荷作用的矩形厚板的精确解.研究和考察了板的厚度对弯曲的影响及薄板弯曲的Kirchhoff理论的适用范围.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号