首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
MoO42? is reduced by diethyldithiocarbamate (Et2dtc?) on prolonged digestion in aqueous medium whereby the complex [Mo2VO2S2(Et2dtc)2] is formed. The central moiety Mo2O2S22+ has a high formation tendency. When [Mo2V(S2)6]2? is refluxed with Et2dtc? in ethanol, [Mo2VS (Et2dtc)2] is formed, the X-ray crystal structure of which has been determined (space group P212121, a = 10.550(2) Å, b = 13.820(5) Å, c = 14.723(12) Å, dc = 1.90 g · cm3?, Z = 4). The Mo? Mo distance of the diamagnetic compound is 2.817(2) Å and the average Mo=St distance 2.099(4) Å.  相似文献   

2.
Reaction of Cyclopentadienyl Substituted Molybdenum(V) Tetrachlorides with LiPH(2,4,6-Bu C6H2) and KPPh2(Dioxane)2. Crystal Structures of [Cp0Mo(μ? Cl)2]2 and [Cp Mo2(μ? Cl)3(μ? PPh2)] (Cp0 = C5Me4Et) The reaction of [Cp0Mo(CO)3]2 (Cp0 = C5Me4Et) and [Cp′Mo(CO)3]2 (Cp′ = C5H4Me) with PCl5 in CH3CN furnishes the Mo(V) complexes Cp0MoCl4(CH3CN) 1 and Cp′MoCl4(CH3CN) 2 in good yields. While 1 and 2 are reduced by LiPH(2,4,6-BuC6H2) to the Mo(III) complexes [Cp0Mo(μ? Cl)2]2 3 and [Cp′Mo(μ? Cl)2]2 4 , the reaction of 1 with KPPh2(dioxane)2 yields the reduction/substitution product [CpMo2(μ? Cl)3(μ? PPh)] 5 in low yield. 1 – 4 were characterized spectroscopically (i.r., mass, 3 and 4 also n.m.r.). An X-ray crystal structure determination was carried out on 3 and 5. 3 crystallizes in the triclinic space group P1 (No. 2) with a = 8.278(4), b = 12.508(7), c = 12.826(7) Å, α = 86.78(5), β = 81.55(2), γ = 75.65(4)°, V = 1 272.4 Å3 and two formula units in the unit cell (data collection at ? 67°C, 4 255 independent observed reflections, R = 2.9%); 5 crystallizes in the triclinic space group P1 (No. 2) with a = 11.536(8), b = 12.307(9), c = 13.157(9) Å, α = 91.41(6), β = 100.42(5), γ = 112.26(6)°, V = 1 688.7 Å3 and two formula units in the unit cell (data collection at ? 60°C, 6 147 independent observed reflections, R = 4.9%). The crystal structure of 3 shows the presence of centrosymmetric dimeric molecules with four bridging chloro ligands. In 5, two Mo atoms are bridged by three chloro ligands and one PPh2 ligand. The Mo? Mo bond length in 3 and 5 (2.600(2), 2.596(2) Å and 2.6388(8) Å) is in agreement with a Mo? Mo bond.  相似文献   

3.
Peripheral Bonding of Mercury(II) Iodide to Trinuclear Molybdenum-Sulfur-Dithiophosphinato Clusters: [Mo3S4(R2PS2)4HgI2] (R = Et, Pr) Reaction of Mo3S4(R2PS2)4 1 (a : R = Et, b : R = Pr) with HgI2 in THF yields the diamagnetic title complexes [Mo3S4(R2PS2)4HgI2] 3 . The crystal structure of [ 3a (H2O)] · 2 CH2Cl2 shows the complexes to consist of a triangular array of Mo atoms which are bridged by μ2? S atoms and capped by a μ3? S atom. Each of the Mo atoms is chelated by a dithiophosphinato ligand Et2PS2? and in addition two Mo atoms are bridged by a Et2PS2? ligand while the H2O molecule is bonded weakly to the third Mo atom. Thus, all Mo atoms reveal a distorted octahedral coordination sphere. HgI2 is ?peripherally”? bonded to the cluster via two S atoms, one of which belongs to a chelating ligand and the other one to the bridging ligand. Space group P1 , lattice constants a = 12.157(2), b = 15.284(3), c = 16.049(3) Å, α = 115.56(1), β = 107.35(1), and γ = 94.62(1)°; Z = 2, dcalc = 2.23 mg/mm3; 4 236 observed reflections, R = 0.068. In organic solvents complexes 3 are strong electrolytes. VT-31P NMR data suggest a stepwise dissociation of 3 with formation of [Mo3S4(R2PS2)3] +[(R2PS2)HgI2]? and elimination of the bridging ligand from the cluster.  相似文献   

4.
Syntheses and Structures of (Et4N)2[Re(CO)3(NCS)3] and (Et4N)[Re(CO)2Br4] Rhenium(I) and rhenium(III) carbonyl complexes can easily be prepared by ligand exchange reactions starting from (Et4N)2[Re(CO)3Br3]. Using nonoxidizing reagents the facial ReI(CO)3 unit remains and only the bromo ligands are exchanged. Following this procedure, (Et4N)2[Re(CO)3(NCS)3] can be obtained in high yield and purity using trimethylsilylisothiocyanate. The compound crystallizes in the monoclinic space group P21/n, a = 18.442(5), b = 17.724(3), c = 18.668(5) Å, β = 92.54(1)°, Z = 8. The NCS? ligands are coordinated via nitrogen. The reaction of [Re(CO)3Br3]2? with Br2 yields the rhenium(III) anion [Re(CO)2Br4]?. The tetraethylammonium salt of this complex crystallizes in the noncentrosymmetric, orthorhombic space group Cmc21, a = 8.311(1), b = 25.480(6), c = 8.624(1) Å, Z = 4. The carbonyl ligands are positioned in a cis arrangement. Their strong trans influence causes a lengthening of the Re? Br bond distances by at least 0.05 Å.  相似文献   

5.

The synthesis and structural characterization of a novel In(III) complex is described. The reaction between InCl3 with sodium mercapto-acetic acid (NaSCH2(CO)OH) in 4-methylpyridine (CH3(C5H5N), (4-Mepy)) at 25°C affords [ClIn(SCH2(CO)O)2]2-[(4-MepyH)2]2+ (1). X-ray diffraction studies of (1) show it to have a distorted square-pyramidal geometry with the [(-SCH2(CO)CO-)] ligands in a trans conformation. The compound crystallizes in the P1(No. 2) space group with a = 7.8624(6) Å, b = 9.950(1) Å, c = 13.793(2) Å, α = 107.60(1)°, β = 90.336(8)°, γ = 98.983(9)°, V = 1014.3(4) Å3, R(F°) = 0.037 and Rw = 0.048.  相似文献   

6.
Dodecanuclcar cluster complexes [Mo12S16(PEt3)10] 1 and [Mo12Se16(PEt3)10] 2 have been prepared by the reactions of [Mo6S8(PEt3)6] with sulfur or [Mo6Se8(PEt3)6] with Cp2TiSe5, respectively, in toluene at refluxing temperature. The structures have been determined at 173 K by X-ray crystallography. The compound 1 ·3CHCl3 crystallizes in the triclinic space group $ {\rm P}\bar 1 $, with a = 14.859(5) Å, b = 15.868(4) Å, c = 14.200(7) Å, α = 100.58(3)°, β = 117.58(3)°, γ = 79.53(2)°, V = 2899(1) Å3, and Z = 1. Full-matrix least-squares refinement using 9016 observed reflections (Io > 2σ(Io)) gave R = 0.056, and Rw = 0.045. The data for 2 ·2CHCl3 are: triclinic, $ {\rm P}\bar 1 $, a = 15.737(4) Å, b = 18.763(9) Å, c = 13.062(4) Å, α = 102.45(3)°, β = 128.54(2)°, γ = 69.49(3)°, V = 2825 Å3, Z = 1, R = 0.096, and Rw = 0.120 for 5922 reflections (Io > 2σ(Io)). The cluster complexes 1 and 2 have two octahedral molybdenum cluster units linked by the rhomboidal intercluster Mo24-E)2 bonding. The intercluster Mo—Mo distances in 1 are 3.419 Å and 2 3.551 Å. The cyclic voltammetry of 1 and 2 shows two oxidation and two reduction steps separated as large as 380–490 mV. The UV-Vis spectra of the dodecanuclear cluster complexes 1 and 2 have an extra weak band at around 744 nm which is absent in the starting octahedral cluster complexes.  相似文献   

7.
A facile synthesis of the novel selenium-capped trimolybdenum and tritungsten ring carbonyl clusters [Se2M3(CO)10]2− (M = Mo, 1; W, 4) have been achieved. The selenium-capped trimolybdenum cluster compound [Et4N]2[Se2Mo3(CO)10] ([Et4N]2[1]) can be obtained from the reaction of the trichromium cluster compound [Et4N]2[Se2Cr3(CO)10] with 4 equiv. of Mo(CO)6 in refluxing acetone. On the other hand, when [Et4N]2[Se2Cr3(CO)10] reacted with 4 equiv. of W(CO)6 in refluxing acetone, the planar cluster compound [Et4N]2[Se2W4(CO)18] ([Et4N]2[3]) was isolated, which could further transform to the tritungsten cluster compound [Et4N]2[Se2W3(CO)10] ([Et4N]2[4]) in good yield. Alternatively, clusters 1 and 4 could be formed from the reactions of the monosubstituted products [Et4N]2[Se2Cr2M(CO)10] (M = Mo; W, [Et4N]2[2]) with 3 equiv. of M(CO)6 in acetone, respectively. Complexes 1-4 are fully characterized by IR, 77Se NMR spectroscopy, and single-crystal X-ray analysis. Clusters 1, 2, and 4 are isostructural and each display a trigonal bipyramidal structure with a homometallic M3 ring (M = Mo, 1; W, 4) or a heterometallic Cr2W ring that is further capped above and below by μ3-Se atoms. Further, the intermediate planar complex 3 exhibits a Se2W2 square with each Se atom externally coordinated to one W(CO)5 group. This paper describes a systematic route to a series of selenium-capped trimetallic carbonyl clusters and the formation and the structural features of the resultant clusters are discussed.  相似文献   

8.
The new complexes [Et4N]2 [Mo(CO)4(SR)2] (R = Ph, Bz) have been prepared by reaction of [Et4N] [SR] with (norbornadiene)Mo(CO)4 at low temperature. The IR spectra and electrochemical behavior of these two species are different, perhaps implicating different conformational isomers with respect to the thiolate ligands. These complexes may prove to be valuable reagents for the synthesis of new heterometallic compounds, by virtue of their cis-monodentate thiolate ligands.  相似文献   

9.
Reaction of [{Cp(CO)3Mo}2SbCl] with S8 or Se8 leads to the formation of cluster compounds [{Cp(CO)2Mo}2ESbCl] (E = S, Se). [{Cp(CO)2Mo}2SSbCl] crystallizes monoclinic, space group P21/n with a = 812.28(3), b = 855.65(4), c = 2441.01(9) pm and β = 90.149(3)°; [{Cp(CO)2Mo}2SeSbCl] · CH2Cl2 crystallizes triclinic, space group P$\bar{1}$ with a = 828.82(9), b = 1002.8(1), c = 1340.0(2) and α = 109.24(1), β = 100.87(1), γ = 96.81(1)°. For both compounds X‐ray crystal structure analysis reveals tetrahedral Mo2SbE cluster cores with Sb–E bond lengths of 256.8(1) pm (E = S) and 265.3(1) (E = Se). According to the 18 electron rule the [{Cp(CO)2Mo}2ESbCl] clusters can be regarded as complexes of the 4 electron donator ESbCl that is coordinated “side‐on” to a {Cp(CO)2Mo}2 fragment.  相似文献   

10.
Through the reactions of ferrous thiolates with tetrathiomolybdate, we discussed the reaction pathways and possible intermediates during the formation of double-cubane type Mo-Fe-S cluster compounds. We also reported the synthesis, crystal structure, IR and magnetic susceptibility measurements of the title compound 2. The crystal of 2 belongs to triclinic system, Mr = 2670.3; ; a = 12.755(4) Å, b = 13.076(3) Å, c = 20.576(4) Å; α = 80.00 (2)°, β = 81.39(2)°, γ = 61.51(2)°; V = 2966.3(14) Å3; Z = 1; Dc = 1.495 g/cm2. Final R factor is 0.077 for 4031 observed reflections. The compound was obtained through the reaction of (Et4N)2[Fe4(SPh)10] (1) with (Et4N)2MoS4 in acetonitrile solution. The structure of anion 2 is two cubane clusters bridged by a Fe(SPh)6 group. The Mo… Mo' distance of 7.188 Å is the longest among all double-cubane cluster compounds of known structures.  相似文献   

11.
The interaction of [Mo(CO)3bipy]2 with various monodentate ligands L (L = NH3, pyr, P(C6H5)3, P(C6H5)Cl2, CN?, SO2) yields, according to the reaction equation in ?Inhaltsübersicht”?, mixed tricarbonyl compounds Mo(CO)3bipyL by cleavage of the CO bridges of the dimeric starting carbonyl. Oxidation of [Mo(CO)3D]2 (D = bipy, phen) by means of iodine, partly in the presence of free bipy or phen, leads to the covalent and ionic, respectively, compound types [MoII(CO)3DI2]2, [MoI(CO)2DI]2, [MoII(CO)2D2I]I and [MoII(CO)2D2I]I3.  相似文献   

12.
The carbonylation of Os2(CO)10[-CH2N(Me)C(Et)](-H),1 at 110°C/1300 psi has yielded the carbene complex Os3(CO)11[C(Et)NMe2],2, the first simple carbene derivative of Os3(CO)12, in 68% yield. Compound2 was characterized by a single crystal structure analysis which showed the position of a dimethylaminocarbene ligand in an equatorial coordination site. Compound2 is decarbonylated at 97°C to reform1 in 59% yield. Compound1 can be decarbonylated further at 125°C to yield the new compound Os3(CO)9 [3-2-C(H)N(Me)C(Et)](-H)2,3 in 94% yield. Compound3 was characterized by a crystal structure analysis and was shown to possess a triply bridging C(H)N(Me)C(Et) ligand containing two carbene centers. Compounds1 and2 can be regenerated from3 by carbonylation with CO at 110°C/800 psi. The facile activation of the N-methyl CH bonds of the carbene ligand of2 is produced by the metal atoms adjacent to the carbene coordination site, and may be a characteristic feature of the chemistry of carbene ligands in clusters. For2: space group=P ,a=11.407(2) Å,b=12.332(2) Å,c=8.602(1) Å, =103.92(1), =110.56(1)°, =82.57(1),Z=2, 2627 reflections,R=0.031; for3: space group=C2/c,a=17.160(3) Å,b=8.947(2) Å,c=27.034(6) Å, =97.82(1)°,Z=8, 2044 reflections,R=0.038.  相似文献   

13.
New complexes {M(CO)4[Ph2P(S)P(S)Ph2]} (M = Cr, Mo and W), (1a)–(3a), [(1a), M = Cr; (2a), M = Mo; (3a), M = W] and {M2(CO)10[-Ph2P(S)P(S)Ph2]} (M = Cr, Mo, W), [(1b)–(3b) [(1b), M = Cr; (2b), M = Mo; (3b), M = W]] have been prepared by the photochemical reaction of M(CO)6 with Ph2P(S)P(S)Ph2 and characterized by elemental analyses, f.t.-i.r. and 31P-(1H)-n.m.r. spectroscopy and by FAB-mass spectrometry. The spectra suggest cis-chelate bidentate coordination of the ligand in {M(CO)4[Ph2P(S)P(S)Ph2]} and cis-bridging bidentate coordination of the ligand between two metals in (M = Cr, Mo and W).  相似文献   

14.
A single MoFe3S4 cubane-like cluster compound has been synthesized through spontaneous self-assembly of simple inorganic salts with organosulfur ligand for the first time. (Et4N)-(MoFe3S4(Et2NCSS)5] CH3CN(1) is quite stable in air. The crystal of 1 is monoclinic with space group P2/c, a=22.897 (3)Å, b= 12.399 (2)Å, c=20.928 (4)Å, β=97.15 (1)°, and Z=4. A full matrix least-squares refinement with 6725 unique reflections for all nonhydrogen atoms gives R=0.068. The anion of 1 is the first isolated single MoFe3S4 cubane cluster with core oxidation state [MoFe3S4]4+. The distance between the two 6-coordinate metal atoms (Mo, Fe) is 2.624 Å, which is the shortest M-M' bond observed for Mo-Fe-S clusters so far and the only one shorter than similar distances in FeMo-cofactor. The bond orders of this anion were calculated by EHMO method and the results coincide with the general rule. The structural feature and the unusual stability of 1 can be attributed to the bidentate chelating effect of Et2NCSS-, which leads to high coordination of metal atoms and the various ligated types.  相似文献   

15.
Synthesis and Crystal Structure of (C5H5)Mo(CO)3(AuPPh3) and [(C5H5)Mo(CO)2(AuPPh3)4]PF6 CpMo(CO)3(AuPPh3) is obtained by the reaction of Li[CpMo(CO)3] with Ph3PAuCl at ?95°C in CH2Cl2. It crystallizes in the monoclinic space group C2/c with a = 2625.1(7), b = 883.2(1), c = 2328.4(7) pm, β = 116.39(1)° und Z = 8. In the complex the AuPPh3 group is coordinated to the CpMo(CO)3 fragment with a Au? Mo bond of 271,0 pm. The Mo atom thus achieves a square pyramidal coordination with the center of the Cp ring in apical position. CpMo(CO)3(AuPPh3) reacts under uv irradiation with an excess of Ph3PAuN3 to afford the cluster cation [CpMo(CO)2(AuPPh3)4]+. It crystallizes as [CpMo(CO)2(AuPPh3)4]PF6 · 2 CH2Cl2 in the orthorhombic space group P212121 with a = 1553.9(1), b = 1793.8(2), c = 2809.8(7) pm und Z = 4. The five metal atoms form a trigonal bipyramidal cluster skeleton with the Mo atom in equatorial position. The Mo? Au distances range from 275.5 to 280.8 pm, and the Au? Au distances are between 281.2 and 285.6 pm.  相似文献   

16.
The reaction of (OC)4Re[μ-E-HC? C(CO2Me)CS2]Re(CO)4, 1 with EtNH2 yielded two new complexes: Re(CO)4[C(H)? C(CO2Me)C(NHEt)? S], 2 , (52%) and Re(CO)3(NH2Et)[C(H)? C(CO2Me)C(NHEt)=S], 3a (24%) by competitive attack of the EtNH2 at the dithiocarboxylate grouping and at the hydrogen substituted olefinic carbon atom in 1 . In both cases there is a loss of one of the rhenium groupings. The reaction of the sulfurized and oxygenated derivatives of 1, (OC)4Re[EC(H)C(CO2Me)CS2]Re(CO)4, 4a (E=S), 4b (E=O) with EtNH2 yielded Re(CO)4[C(H)=C(CO2Me)C(NHEt)=S], 5a , the parent carbonyl of 3a , by exclusive attack of the amine at the hydrogen substituted olefinic carbon atom. The reaction of (OC)4Re[μ-SC(S)C(CO2Me)C(H)S]Re(CO)4, 6a (an isomer of 4a ) with EtNH2 produced a similar result. The reaction of 4a with Et2NH yielded Re(CO)4[μ-S2C=C(CO2Me)C=NEt2], 5b an N-ethyl substituted derivative of 5a . These results indicate that the addition of certain heteroatoms can have a directing effect upon the reactivity of these compounds with amines. Compounds 2 and 5a were characterized by single crystal x-ray diffraction analyses. Crystal Data: For 2 : space group = P1, a = 10.782(1) Å, b = 14.721(2) Å, c = 9.940(2) Å, a = 91.57(1)°, β = 93.61(1)°, γ = 70.774(9)°, Z = 4, 4516 reflections, R = 0.047 and for 5a : space group = P21/n, a = 11.389(2) Å, b = 9.660(2) Å, c = 14.756(3) Å, β = 103.36(2)°, Z = 4, 1601 reflections, R = 0.022.  相似文献   

17.
Previous attempts to determine the strengths of multiple metal-metal bonds are reviewed. Estimates of 73 and 97 kcal/mole for the Mo? Mo bond energies in Mo2Cl and Mo2(O2CH)4, respectively, are obtained by combining the known experimental bond energy in Mo2 (96.5 ± 5 kcal/mole) with the results of SCF-Xα-SW calculations on Mo2, Mo2Cl, and Mo2(O2CH)4. Possible errors in the estimates are discussed. It is noted that the quadruple bonds in the complexes are predicted stronger per component than the sextuple bond in the diatomic.  相似文献   

18.
On the Reactivity of the Ferriophosphaalkene (Z)‐[Cp*(CO)2Fe‐P=C(tBu)NMe2] towards Propiolates HC≡C‐CO2R (R=Me, Et) and Acetylene Dicarboxylates RO 2C‐C≡C‐CO2R (R=Me, Et, tBu) The reaction of equimolar amounts of (Z)‐[Cp*(CO)2Fe‐P=C(tBu)NMe2] 3 and methyl‐ and ethyl‐propiolate ( 2a, b ) or of 3 and dialkyl acetylene dicarboxylates 1a (R=Me), 1b (Et), 1c (tBu) afforded the five‐membered metallaheterocycles [Cp*(CO) =C(tBu)NMe2] ( 4a, b ) and [Cp*(CO) =C(tBu)NMe2] ( 5a—c ). The molecular structures of 4b and 5a were elucidated by single crystal X‐ray analyses. Moreover, the reactivity of 4b towards ethereal HBF4 was investigated.  相似文献   

19.
Molybdenum(II) Halide Clusters with two Alcoholate Ligands: Syntheses and Crystal Structures of (C18H36N2O6Na)2[Mo6Cl12(OCH3)2] and (C18H36N2O6Na)2[Mo6Cl12(OC15H11)2] · 2C4H6O3 . Reaction of Mo6Cl12 with two equivalents of sodium methoxide in the presence of 2,2,2-crypt yields (C18H36N2O6Na)2[Mo6Cl12(OCH3)2] ( 1 ), which can be converted to (C18H36N2O6Na)2[Mo6Cl12(OC15H11)2] · 2C4H6O3 ( 2 ) by metathesis with 9-Anthracenemethanole in propylene carbonate. As confirmed by X-ray single crystal structure determination ( 1 : C2/m, a=25.513(8) Å, b=13.001(3) Å, c=10.128(3) Å, β=100.204(12)°; : C2/c, a=15.580(5) Å, b=22.337(5) Å, c=27.143(8) Å, β=98.756(10)°) the compounds contain anionic cluster units [Mo6ClCl(ORa)2]2? with two alcoholate ligands in terminal trans positions ( 1 : d(Mo—Mo) 2.597(2) Å to 2.610(2) Å, d(Mo—Cli) 2.471(3) Å to 2.493(4) Å, d(Mo—Cla) 2.417(8) Å and 2.427(8) Å, d(Mo—O) 2.006(13) Å; 2 : d(Mo—Mo) 2.599(3) Å to 2.628(3), d(Mo—Cli) 2.468(8) Å to 2.506(7) Å, d(Mo—Cla) 2.444(8) Å and 2.445(7) Å, d(Mo—O) 2.012(19) Å).  相似文献   

20.
The synthesis and crystal structure of novel trinuclear molybdenum cluster compound with somewhat “loose” coordination site {Mo33-S)(μ-S)3[S2P(OEt)2l4 ? P(C6H5)3} ? (0.86 CH2C12) have been reported. The cluster crystallizes in the space group with two molecules in a unit cell whose parameters are a=10.472(4), b=14.375(2), c=21.695(3)Å; α=74.04(1)°, β=76.50(2)°, γ=72.22 (2)°, V=2950Å3 and Do=1.693 g ? cm?3. On the basis of 4840 independent reflections with I≥2σ(I), the structure was solved by heavy atom method and Fourier method and refined by full-matrix least-squares techniques to a final R=0.058. The distances between Mo atoms in this cluster are 2.731(1), 2.748(1) and 2.753(1)Å respectively. The meat value of Mo—Mo bond lengths is slightly shorter than those in other trinuclear Mo clusters with “loosely coordinated” site. In addition, the PPh3 ligand is loosely coordinated to one Mo atom in direction opposite to the μ3-S with Mo—P bond length of 2.647(3)Å. This is different from the other structurally analogous clusters, in which the loosely coordinated ligand is trans to μ2-S. A summary of Mo—Mo and Mo—L bonding for such clusters is given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号