首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A chitosan resin derivatized with serine moiety (serine-type chitosan) was newly developed by using the cross-linked chitosan as a base material. The adsorption behavior of trace amounts of metal ions on the serine-type chitosan resin was systematically examined by packing it in a mini-column, passing a metal solution through it and measuring metal ions in the effluent by ICP-MS. The resin could adsorb a number of metal cations at pH from neutral to alkaline region, and several oxoanionic metals at acidic pH region by an anion exchange mechanism. Uranium and Cu could be adsorbed selectively at pH from acidic to alkaline region by a chelating mechanism; U could be adsorbed quantitatively even at pH 3–4. Uranium adsorbed on the resin was easily eluted with 1 M nitric acid: the preconcentration (5-, 10-, 50- and 100-fold) of U was possible. The column treatment method was used prior to the ICP-MS measurement of U in natural river, sea and tap waters; R.S.D. were 2.63, 1.13 and 1.37%, respectively. Uranium in tap water could be determined by 10-fold preconcentration: analytical result was 1.46±0.02 ppt. The resin also was applied to the recovery of U in sea water: the recovery tests for artificial and natural sea water were 97.1 and 93.0%, respectively.  相似文献   

2.
A chitosan resin possessing a phenylarsonic acid moiety (phenylarsonic acid type chitosan resin) was developed for the collection and concentration of trace uranium prior to inductively coupled plasma (ICP) atomic emission spectrometry (AES) measurement. The adsorption behavior of 52 elements was systematically examined by packing it in a minicolumn and measuring the elements in the effluent by ICP mass spectrometry. The resin could adsorb several cationic species by a chelating mechanism, and several oxo acids, such as Ti(IV), V(V), Mo(VI), and W(VI), by an anion-exchange mechanism and/or a chelating mechanism. Especially, U(VI) could be adsorbed almost 100% over a wide pH region from pH 4 to 8. Uranium adsorbed was easily eluted with 1 M nitric acid (10 mL), and the 25-fold preconcentration of uranium was achieved by using a proposed column procedure, which could be applied to the determination of trace uranium in seawater by ICP-AES. The limit of detection was 0.1 ng mL−1 for measurement by ICP-AES coupled with 25-fold column preconcentration.  相似文献   

3.
High-capacity chitosan-based chelating resin, N-(2-hydroxyethyl)glycine-type chitosan, was synthesized using chloromethyloxirane (CMO) as a cross-linker and a coupling arms and hydroxylethylamine and bromoacetic acid as a synthesizer for the N-(2-hydroxyethyl)glycine chelating moiety. The CMO could bind with both of hydroxyl and amino group of the chitosan resin, and then couple with the chelating moiety. Increasing the amounts of chelating moiety could increase the capacity of the resin toward metal ions. Most transition and rare-earth metals could adsorb quantitatively on the resin at wide pH ranges and could be separated from alkaline and alkaline-earth metals. The resin was packed in a mini-column (40 mm length × 2 mm i.d.) which was installed in a Multi-Auto-Pret system. The Multi-Auto-Pret system coupled with ICP-AES was successfully applied to the determination of transition and rare-earth metals in river water samples.  相似文献   

4.
Cross-linked chitosan was chemically modified with di-2-propanolamine via an arm of chloromethyloxirane (CCTS-DPA resin). The adsorption behavior of the resin towards 62 elements was examined using a mini-column pretreatment method, and the collected elements were eluted with 1 mol L− 1 nitric acid before measurement by inductively coupled plasma-mass spectrometry (ICP-MS).The CCTS-DPA resin can adsorb several metal cations and several oxoanionic elements at appropriate pH. However, di-2-propanolamine (DPA) attached to cross-linked chitosan (CCTS) showed excellent ability and selectivity for the adsorption of germanium at pH 6 to 9. The adsorption capacity of the resin for germanium (IV) was found to be 106 mg g− 1 resin, whereas the adsorption rate constant was 9.82 × 10− 2 min− 1. Through the column treatment, alkali and alkaline earth matrices in river water and seawater matrices could be completely removed. The resin can also successfully remove chloride and selenium that can interfere with the direct determination of germanium by ICP-MS. The applicability of the CCTS-DPA resin was further demonstrated for the collection/preconcentration of germanium in environmental water samples and its determination by ICP-MS. The concentrations of germanium in tap water, river water and seawater samples were found in the range of 0.011 to 0.022 μg L− 1.  相似文献   

5.
A chitosan resin derivatized with 3,4-dihydroxybenzoic acid moiety (CCTS-DHBA resin) was newly synthesized for the collection/concentration of trace uranium by using cross-linked chitosan (CCTS) as base material, and the adsorption behavior of uranium as well as 60 elements on the resin was examined by passing the sample solutions through a mini-column packed with the resin. After the elution of the collected elements on the resin with 1 M HNO3, the eluates were measured by inductively coupled plasma-mass spectrometry (ICP-MS).The CCTS-DHBA resin can adsorb several metal cations and several oxoanionic elements at appropriate pH. Among these metal ions, uranium shows an excellent adsorption behavior on this resin. Uranium as UO22+ species can be adsorbed on the resin by chelating mechanism with adsorption capacity of 330 mg g−1 resin. Through the column treatment, the complete removal of large amounts of alkali and alkaline earth matrices without any loss of adsorption efficiency over prolonged usage were achieved with this resin.The CCTS-DHBA resin was applied to the adsorption/collection of uranium in tap water, river water and seawater samples with satisfactory results. The validation of the proposed method was carried out by analyzing uranium in the standard reference materials of SLRS-4, CASS-4, and NASS-5 after passing through the CCTS-DHBA resin, and the results showed good agreement with the certified values.  相似文献   

6.
A chitosan resin functionalized with 3-nitro-4-amino benzoic acid moiety (CCTS-NABA resin) was newly synthesized for the collection/concentration of trace molybdenum by using cross-linked chitosan (CCTS) as base material. The carboxyl group of the moiety was chemically attached to amino group of cross-linked chitosan through amide bond formation. The adsorption behavior of molybdenum as well as other 60 elements on the resin was examined by passing the sample solutions through a mini-column packed with the resin. After the elution of the elements collected on the resin with 1 M HNO3, the eluates were analyzed by inductively coupled plasma-mass spectrometry (ICP-MS) and atomic emission spectrometry (ICP-AES).

The CCTS-NABA resin can adsorb several metal ions, such as vanadium, gallium, arsenic, selenium, silver, bismuth, thorium, tungsten, tin, tellurium, copper, and molybdenum at appropriate pHs. Among these metal ions, only molybdenum could be adsorbed almost completely on the resin at acidic regions. An excellent selectivity toward molybdenum could be obtained at pH 3–4. The adsorption capacity of CCTS-NABA resin for Mo(VI) was 380 mg g−1 resin. Through the column pretreatment, alkali and alkaline earth metals in river water and seawater samples were successfully removed.

The CCTS-NABA resin was applied to the adsorption/collection of molybdenum in river water and seawater samples. The concentrations of molybdenum in river water samples were found in the range of 0.84 and 0.95 ppb (ng g−1), whereas molybdenum in seawater was about 9 ppb. The validation of the proposed method was carried out by determining molybdenum in the certified reference materials of SLRS-4, CASS-4, and NASS-5 after passing through the CCTS-NABA resin; the results showed good agreement with the certified values.  相似文献   


7.
Hirata S  Kajiya T  Aihara M  Honda K  Shikino O 《Talanta》2002,58(6):1185-1194
A home made column of commercially available iminodiacetate resin, Muromac A-1 (50–100 mesh) was used to concentrate rare earth elements (REEs) (15 elements: Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu) in seawater. An automated low pressure flow analysis method with on-line column preconcentration/inductively coupled plasma mass spectrometry (ICP-MS) is described for the determination of REEs in seawater. Sample solutions (adjusted to pH of 3.0) passed through the column. After washing the column with water, the adsorbed elements were subsequently eluted into the plasma with 0.7 M nitric acid. Calibration curves were accomplished by means of purified artificial seawater with a sample loading time of 120 s. Detection limits (DLs) of the on-line column preconcentration/ICP-MS by eight replicate operations were between 0.040 and 0.251 pg ml−1 for REEs in the artificial seawater. The precision was less than 8.9% for REEs and one sample can be processed in 7 min using a 7 ml of sample. The proposed method was applied to determine REEs in coastal seawater of Hiroshima Bay, Japan.  相似文献   

8.
Gao Y  Oshita K  Lee KH  Oshima M  Motomizu S 《The Analyst》2002,127(12):1713-1719
Chelating resins, two kinds of iminodiacetate derivatives (IDA) of cross-linked chitosan (CCS) were synthesized and investigated for adsorption capacity, matrix elimination and collection/concentration of analytes by a column pretreatment in a multi-element ICP-MS determination method. The adsorption behavior of 54 elements at the 10 ng ml(-1) level on chitosan derivatives in a packed mini-column was systematically examined. Almost 30 kinds of metal ions were recovered quantitatively at pH 5 with CCS-HP/IDA (cross-linked chitosan possessing N-2-hydroxypropyl iminodiacetic acid groups) column. Compared with available chitosan-iminodiacetate resin, CHITOPEARL CI-03, the recovery of the metal ions such as Cu, Pb and La is satisfactory with CCS-IDA (cross-linked chitosan possessing N,N-iminodiacetic acid groups) and CCS-HP/IDA using 2 M nitric acid as an eluent, which may be attributed to the difference of cross-linking and macroporous structure. Compared with Chelex-100, the adsorption efficiency is in the order: Chelex-100 > CCS-IDA > CCS-HP/IDA, especially in the chelating ability for alkaline earth metals. The resin with a longer spacer (CCS-HP/IDA) showed higher adsorption selectivity between heavy metal ions and alkaline earth metals at pH < 7. The separation efficiency of the major matrix cations in seawater (Na. K, Mg, Ca) has also been investigated, and matrix interference was negligible even in a seawater sample at pH 5 with CCS-HP/IDA. The recoveries of Mn at pH 5 with CCS-HP/IDA or Chelex-100 were almost 100%. However, those of Mg with each resin were 4 or 98%, respectively. The adsorption capacities of synthesized CCS-HP/IDA for Cu(II), Pb(II) and La(III) were 0.90, 0.65 and 0.34 mmol g(-1), respectively. Therefore, the chelating chitosan resins developed are applicable to the pretreatment of trace amounts of elements in various kinds of water samples.  相似文献   

9.
A novel chelating resin functionalized with serine diacetic acid moiety was synthesized by using chitosan as base material, and applied to the collection/concentration of trace elements in environmental water samples, followed by the determination using inductively coupled plasma-atomic emission spectrometer (ICP-AES). The synthesized resin, crosslinked chitosan serine diacetic acid (CCTS-SDA), showed good adsorption behavior toward trace amounts of Cd, Pb, Cu, Ni, V, Ga, Sc, In, and Th in a wide pH range. Additionally, rare earth elements also can be retained on the resin at neutral pH region. The adsorbed elements can be easily eluted with 1 mol L−1 of nitric acid, and their recoveries were found to be 90-100%. The CCTS-SDA was packed in a mini-column, which was then installed in a computer-controlled auto-pretreatment system (Auto-Pret System) for on-line trace elements collection and determination with ICP-AES. Experimental parameters which related to the improvement of sensitivity and reproducibility were optimized. The limits of detection (LOD) for 13 elements were found to be in sub-ppb level. The proposed method with CCTS-SDA resin was successfully applied to the determination of trace elements in river water samples. The method was validated by determining a certified reference material of river water, SLRS-4.  相似文献   

10.
A solid phase collection/concentration method using anion exchanger filters and a small syringe packed with chelating resin fibers is adopted as a preconcentration tool for trace elements and a separation tool for matrices in aqueous samples prior to the measurement by inductively coupled plasma-mass spectrometry (ICP-MS). The effects of fiber volume, sample volume, eluent volume, and sample flow rate on metal recoveries were investigated in detail to obtain optimum pretreatment conditions. Several heavy metals (HMs) such as, V, Mn, Co, Ni, Cu, Zn, Ga, Cd, Pb, Th and U, as well as 14 rare earth elements (REEs) in sample solutions at pH 6 were quantitatively collected on the solid phase. These adsorbed elements were completely recovered by eluting with 2 ml of 1.0 M nitric acid. At pH 6, more than 99% of alkali and alkaline earth metals in sample solutions were eliminated. The proposed method was evaluated by analyzing two standard reference materials (SRM): peach leaves (NIST 1547) and pond sediment (NIES No. 2). The solid samples were decomposed by microwave-heating and pressurizing acid digestion technique, and then treated by the proposed syringe-type pretreatment method, followed by the ICP-MS measurement. The analytical results for HMs in the SRMs obtained by the present method agreed well with the certified values.  相似文献   

11.
A chitosan resin derivatized with N-methyl-d-glucamine (CCTS-NMDG) was synthesized by using a cross-linked chitosan (CCTS) as base material. The N-methyl-d-glucamine (NMDG) moiety was attached to the amino group of CCTS through the arm of chloromethyloxirane. The adsorption behavior of 59 elements on the synthesized resin was systematically examined by using the resin packed in a mini-column, passing water samples through it and measuring the adsorbed elements in eluates by ICP-MS. The CCTS-NMDG resin shows high ability in boron sorption with the capacity of 0.61 mmol ml−1 (= 2.1 mmol g−1). The sorption kinetics of this resin was faster than that of the commercially available resins. Other advantages of the synthesized resin are: (1) quantitative collection of boron at neutral pH regions; (2) complete removal of large amounts of matrices; (3) no loss of efficiency over prolonged usage; (4) effective collection of boron in wide range concentration using a mini column containing 1 ml resin; (5) complete elution of boron with 1 mol l−1 nitric acid. The resin was applied to the collection/concentration of boron in water samples. Boron in tap water and river water was found to be in the range of 6-8 μg l−1. The limit of detection (LOD) of boron after pretreatment with CCTS-NMDG resin and measurement by ICP-MS was 0.07 μg l−1 and the limit of quantification (LOQ) was 0.14 μg l−1 when the volume of each sample and eluent was 10 ml.  相似文献   

12.
A new sorbent, maleic acid grafted polytetrafluoroethylene fiber (MA-PTFE), was prepared and evaluated for on-line solid-phase extraction coupled with inductively coupled plasma mass spectrometry (ICP-MS) for fast, selective, and sensitive determination of (ultra)trace rare earth elements (REEs) in environmental samples. The REEs in aqueous samples at pH = 3.0 were selectively extracted onto a microcolumn packed with the MA-PTFE fiber, and the adsorbed REEs were subsequently eluted on-line with 0.9 mol l(-1) HNO3 for ICP-MS determination. The new sorbent extraction system allows effective preconcentration and separation of the REEs from the major matrix constituents of alkali and alkali earth elements, particularly their separation from barium that produces considerable isobaric interferences of 134Ba16O1H+, 135Ba16O+, 136Ba16O1H+, and 137Ba16O+ on 151Eu+ and 153Eu+. With the use of a sample loading flow rate of 7.4 ml min(-1) for 120 s preconcentration, enhancement factors of 69-97 and detection limits (3s) of 1-20 pg l(-1) were achieved at a sample throughput of 22 samples h(-1). The precision (RSD) for 16 replicate determinations of 50 ng l(-1) of REEs was 0.5-1.1%. The developed method was successfully applied to the determination of (ultra)trace REEs in sediment, soil, and seawater samples.  相似文献   

13.
Rosi Ketrin Katarina 《Talanta》2009,78(3):1043-990
On-line preconcentration and determination of transition and rare-earth metals in water samples was performed using a Multi-Auto-Pret system coupled with inductively coupled plasma-atomic emission spectrometry (ICP-AES). The Multi-Auto-Pret AES system proposed here consists of three Auto-Pret systems with mini-columns that can be used for the preconcentration of trace metals sequentially or simultaneously, and can reduce analysis time to one-third and running cost of argon gas and labor. A newly synthesized chelating resin, ethylenediamine-N,N,N′-triacetate-type chitosan (EDTriA-type chitosan), was employed in the Multi-Auto-Pret system for the collection of trace metals prior to their measurement by ICP-AES. The proposed resin showed very good adsorption ability for transition and rare-earth metal ions without any interference from alkali and alkaline-earth metal ions in an acidic media. For the best result, pH 5 was adopted for the collection of metal ions. Only 5 mL of samples could be used for the determination of transition metals, while 20 mL of samples was necessary for the determination of rare-earth metals. Metal ions adsorbed on the resin were eluted using 1.5 M nitric acid, and were measured by ICP-AES. The proposed method was evaluated by the analysis of SLRS-4 river water reference materials for trace metals. Good agreement with certified and reference values was obtained for most of the metals examined; it indicates that the proposed method using the newly synthesized resin could be favorably used for the determination of transition and rare-earth metals in water samples by ICP-AES.  相似文献   

14.
Yang D  Chang X  Liu Y  Wang S 《Annali di chimica》2005,95(1-2):111-114
The determination of noble metals in various materials usually requires their preconcentration and separation from other elements. In spite of the improvements in analytical instrumentation and the development of new analytical techniques such as ICP-MS, which are capable of detecting metal ions at ppt levels, the interference caused by the sample matrix still exists and is perhaps the most serious problem, making a pre-determination enrichment step necessary. Thus, the search for efficient preconcentration and separation methods is essential. A series of chelating resins that can selectively adsorb noble metal ions from aqueous solutions have been described. Functional groups, such as salicylaldoxime and thiosemicarbazide have been incorporated in cross-linked polymers or porous silica gel. These resins have very high selectivity for one or several types of noble metal ion. However, desorption of noble metals from these resins is usually difficult. Hence, the development of an adsorbent from which noble metals can be easily desorbed is needed. In this paper, a new spherical macroporous epoxy-polyamide chelating resin that met this requirement was synthesized by one step reaction. The synthesis of the resin was safe, rapid and more simple and economical than many report adsorbents. Meanwhile, the resin showed more advantages: better acid and alkali resistance; higher adsorption capacity and lower preconcentration concentrations. A resin column procedure combined with inductively coupled plasma atomic emission spectrometry (ICP-AES) for the determination of trace Rh(III), Ru(III) and Ir(IV) in real samples was established.  相似文献   

15.
On-line system incorporating a microcolumn of Muromac A-1 resin was used for the developing of method for preconcentration of trace elements followed by inductively coupled plasma (ICP) atomic emission spectrometry determination. A chelating type ion exchange resin has been characterized regarding the sorption and subsequent elution of 24 elements, aiming to their preconcentration from water samples of different origins. The effect of column conditioning, pH and flow rate during the preconcentration step, and the nature of the acid medium employed for desorption of the retained elements were investigated. A sample (pH 5) is pumped through the column at 3 ml min−1 and sequentially eluted directly to the ICP with 3 M HNO3/HCl mixtures. In order to remove residual matrix elements from the column after sample loading a short buffer wash was found to be necessary. The effectiveness of the matrix separation process was illustrated. The procedure was validated by analyzing several simple matrices, Standard River water sample as well as artificial seawater. Proposed method can be applied for simultaneous determination of In, Tl, Ti, Y, Cd, Co, Cu and Ni in seawater and for multielement trace analysis of river water. Recovery at 1 μg l−1 level for the determination of investigated 24 elements in pure water ranged from 93.1 to 96% except for Pd (82.2%) and Pb (88.1%). For the same concentration level for seawater analysis recovery was between 81.9 and 95.6% except for Hg (38.2%).  相似文献   

16.
A chitosan resin functionalized with 3,4-diamino benzoic acid (CCTS-DBA resin) was newly synthesized by using a cross-linked chitosan (CCTS) as base material. The adsorption behavior of trace amounts of elements on the CCTS-DBA resin was examined by the pretreatment with a mini-column and measurement of the elements by inductively coupled plasma-Mass spectrometry (ICP-MS). Arsenic(V) could be retained on the CCTS-DBA resin at pH 3 as an oxoanion of H2AsO4. Selenium(VI) is strongly adsorbed at pH 2 and pH 3 as an oxoanion of SeO42−, while selenium(IV) as HSeO3 is adsorbed on the resin at pH 3. The sorption capacities are 82, 64, and 88 mg g−1resin for As(V), Se(IV), and Se(VI), respectively. The effect of common anions and cations on the adsorption of As(V), Se(IV), and Se(VI) were studied; there was no interference from such anionic matrices as chloride, sulfate, phosphate, and nitrate up to 20 ppm, as well as from such artificial river water matrices as Na, K, Mg, and Ca after passing samples through the mini-column containing the resin. The CCTS-DBA resin was applied to the collection of arsenic and selenium species in bottled drinking water, tap water, and river water.  相似文献   

17.
A procedure for separation and preconcentration of trace amounts of cadmium has been proposed. A column of analcime zeolite modified with benzyldimethyltetradecylammonium chloride and loaded with 2-(5-bromo-2-pyridylazo)-5-diethylaminophenol (5-Br-PADAP) was used for retention of cadmium. The cadmium was quantitatively retained on the column at pH approximately 9 and was recovered from column with 5 ml of 2 M nitric acid with a preconcentration factor of 140. Anodic stripping differential pulse voltammetry was used for determination of cadmium. A 0.05 ng/ml detection limit for the preconcentration of aqueous solution of cadmium was obtained. The relative standard deviation (RSD) for eight replicate determinations at the 1 microg/ml cadmium levels was 0.31% (calculated with the peak height obtained). The calibration graph using the preconcentration system was linear from 0.01 to 150 microg/ml in final solution with a correlation coefficient of 0.9997. For optimization of conditions, various parameters such as the effect of pH, flow rate, instrumental conditions and interference of number of ions, were studied in detail. This method was successfully applied for determination of cadmium in various complex samples.  相似文献   

18.
A study was carried out on the preconcentration of ultratrace rare earth elements (REEs) in environmental samples with a micro ion-exchange column and determination by inductively coupled plasma mass spectrometry (ICP-MS). The preconcentration parameters were optimized and the REE recovery was ca. 100% in the pH range 4 to 6 with an ionic strength (μ) less than 0.18. The ion-exchange column capacity with respect to REEs was estimated as 0.96 mmol/g. The linear response coefficients ranged from 0.995 to 0.997 at the pg mL–1 level. The concentration in the blank could be minimized (0.09 to 3.1 pg mL–1) if the buffer solution and the water were purified. The detection limits ranged from 0.03 to 0.40 pg mL–1, for a preconcentration factor of 100. The precision and accuracy of the method was evaluated with a synthetic standard solution and real samples. Results indicated that the REE recovery ranged from 88.1% to 100.2%, and the RSD ranged from 2.7% to 6.7%. Satisfactory results were achieved when this method was applied for the determination of REEs in raw water, purified water and tap water, as well as in environmental aquatic samples. Meanwhile, the method is simple and flexible.  相似文献   

19.
A new chelating resin, Xylenol Orange coated Amberlite XAD-7, was prepared and used for preconcentration of Cd(II), Co(II), Cu(II), Fe(III), Ni(II) and Zn(II) prior to their determination by flame atomic absorption spectrophotometry. The optimum pH values for quantitative sorption of Cd(II), Co(II), Cu(II), Fe(III), Ni(II) and Zn(II) are 4.5-5.0, 4.5, 4.0-5.0, 4.0, 5.0 and 5.0-7.0, respectively, and their desorptions by 2 mol L(-1) HCl are instantaneous. The sorption capacity of the resin has been found to be 2.0, 2.6, 1.6, 1.6, 2.6 and 1.8 mg g(-1) of resin for Cd, Co, Cu, Fe, Ni and Zn, respectively. The tolerance limits of electrolytes, NaCl, NaF, NaI, NaNO3, Na2SO4 and of cations, Mg2+ and Ca2+ in the sorption of the six metal ions are reported. The preconcentration factor was between 50 and 200. The t1/2 values for sorption are found to be 5.3, 2.9, 3.2, 3.3, 2.5 and 2.6 min for the six metals, respectively. The recoveries are between 96.0 and 100.0% for the different metals at preconcentration limits between 10 to 40 ng mL(-1). The preconcentration method has been applied to determine the six metal ions in river water samples after destroying the organic matter (if present in very large amount) with concentrated nitric acid (RSD < or = 8%, except for Cd for which it is upto 12.6%) and cobalt content of vitamin tablets with RSD of approximately 3.0%.  相似文献   

20.
For some saline environments (e.g. deeply percolating groundwater, interstitial water in marine sediments, water sample collected after several steps of fractionation) the volume of water sample available is limited. A technique is presented which enables simultaneous determination of major and trace elements after preconcentration of only 60 mL sample on chelating resins. Chelex-100 and Chelamine were used for the preconcentration of trace elements (Cd, Cu, Pb, Zn, Sc) and rare earth elements (La, Ce, Nd, Yb) from saline water before their measurement by inductively coupled plasma mass spectrometry. Retention of the major elements (Na, Ca, Mg) by the Chelamine resin was lower than by Chelex; this enabled their direct measurement in the solution after passage through the resin column. For trace metal recoveries both resins yield the same mass balance. Only Chelex resin enabled the quantitative recovery of rare earth elements. The major elements, trace metals and rare earth elements cannot be measured after passage through one resin only. The protocol proposes the initial use of Chelamine for measurement of trace and major elements and then passage the same sample through the Chelex resin for determination of the rare earth elements. The detection limit ranged from 1 to 12 pg mL(-1). At concentrations of 1 ng mL(-1) of trace metals and REE spiked in coastal water the precision for 10 replicates was in the range of 0.3-3.4% (RSD). The accuracy of the method was demonstrated by analyzing two standard reference waters, SLRS-3 and CASS-3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号