首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Radiation-induced emulsion polymerization of ethylene with potassium myristate as an emulsifier was studied in connection with the kinetics and the mechanism. The molecular weight of polymer was relatively low, of the order of 103, when a sufficient amount of emulsifier was used. However, polyethylene gel was produced in the absence of a sufficient amount of emulsifier. The rate of polymerization was proportional to the 0.5 power of dose rate and increased slightly with increasing emulsifier concentration. The rate of seeded polymerization followed a similar trend to that for conventional polymerization. Kinetic analysis of these results suggests that the escape of radicals produced by chain transfer of propagating radical with the emulsifier and the monomer from polymer particles into the aqueous phase plays an important part in the rate of polymerization. The melting temperature and the crystallinity of the polymer significantly decreased with increasing polymerization temperature in the range 40–60°C.  相似文献   

2.
The effects of pressure, temperature, and additives on the rate of radiation-induced emulsion polymerization of ethylene with FC-143 as emulsifier were studied kinetically. The rate of polymerization was proportional to the 2.5 power of ethylene fugacity, and the apparent rate constant (rate of polymerization/2.5 power of ethylene fugacity) was constant below 78°C. Above this temperature, the rate constant decreased with an apparent activation energy of ?8.2 kcal/mole. These facts can be interpreted in connection with the polymer structure and the change of rate of escape of radicals from the polymer structure and the change of rate of escape of radicals from the polymer particle into the aqueous phase. The rate of polymerization decreased on addition of a series of n-aliphatic alcohols due to the chain-transfer reaction and consequent escape of radicals to the aqueous phase. On the other hand, the addition of tert-butyl alcohol increased the rate of polymerization, probably because of its effect in increasing swelling of the polymer particles. Addition of electrolytes increased the rate of polymeriaztion as a result of the increase of the number of polymer particles.  相似文献   

3.
The radiation-induced emulsion copolymerization of tetrafluoroethylene with propylene was carried out at room temperature in the presence of gaseous monomers. The formation of hydrofluoric acid in the course of polymerization was observed. The amount of HF formed increased linearly with the irradiation time at various dose rates in the early stage. The tendency was similar to that of time-polymer yield curves. The rate of HF formation was proportional to the first order of the dose rate. The amount of HF formed increased in the presence of oxygen and decreased remarkably above 1 wt% emulsifier, while the polymer yield decreased in the presence of oxygen and increased with the emulsifier concentration. A remarkable decrease in the amount of HF formed in higher emulsifier concentration is mainly attributable to chemical absorption or electrostatic capture of H+ ion on polymer particles produced. Hydrofluoric acid is mainly formed by reaction between primary products (e aq ? and H) from the radiolysis of water and organic fluoride (tetrafluoroethylene and emulsifier), and is little formed by reaction between primary products and copolymer produced. The G value of HF formation was in the order of emulsifier-water system > suspension polymerization > emulsion polymerization, while the polymer yield was in the order of emulsion polymerization > suspension polymerization.  相似文献   

4.
Emulsion polymerization of vinylidene chloride was carried out at 50°C using sodium lauryl sulfate as emulsifier and potassium persulfate as initiator, respectively. Contrary to the results so far reported, the stirring rate did not affect the progress of the polymerization and such an abnormal kinetic behavior as the rate of polymerization suddenly drops in the course of polymerization was not observed. The number of polymer particles produced was proportional to the 0.7 power of the concentration of emulsifier forming micelles and to the 0.3 power of the initial initiator concentration, respectively, and was independent of the initial monomer concentration. The rate of polymerization was in proportion to the 0.3 power of the concentration of emulsifier forming micelles, to the 0.5 power of the initial initiator concentration, to the 0.2 power of the initial monomer concentration, and to the 0.45 power of the number of polymer particles, respectively. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 1919–1928, 1998  相似文献   

5.
The radiation-induced emulsifier-free emulsion polymerization of tetrafluoroethylene was carried out at an initial pressure of 2–25 kg/cm2, temperature of 30–110°C, and under a dose rate of 0.57 × 104?3.0 × 104 rad/hr. The rate of polymerization was shown to be proportional to 1.0 and 1.3 powers of the dose rate and initial pressure, respectively, and is maximal at about 70°C. The molecular weight of polytetrafluoroethylene (PTFE) lies in the range of 105?106, increases with reaction time in the early stage of polymerization, and is maximal at 70°C but is almost independent of the dose rate. An interesting discovery is that PTFE, a hydrophobic polymer, forms as a stable latex in the absence of emulsifier. When PTFE latex coagulates during polymerization under certain conditions, the polymerization rate decreases, probably because polymerization proceeds mainly on the polymer particle surface. The observed rate acceleration and successive increase in polymer molecular weight may be due to slow termination of propagating radicals in the rigid PTFE particles.  相似文献   

6.
The principal subject discussed in the current paper is the radical polymerization in the aqueous emulsions of unsaturated monomers (styrene, alkyl (meth)acrylates, etc.) stabilized by non-ionic and ionic/non-ionic emulsifiers. The sterically and electrosterically stabilized emulsion polymerization is a classical method which allows to prepare polymer lattices with large particles and a narrow particle size distribution. In spite of the similarities between electrostatically and sterically stabilized emulsion polymerizations, there are large differences in the polymerization rate, particle size and nucleation mode due to varying solubility of emulsifiers in oil and water phases, micelle sizes and thickness of the interfacial layer at the particle surface. The well-known Smith-Ewart theory mostly applicable for ionic emulsifier, predicts that the number of particles nucleated is proportional to the concentration of emulsifier up to 0.6. The thin interfacial layer at the particle surface, the large surface area of relatively small polymer particles and high stability of small particles lead to rapid polymerization. In the sterically stabilized emulsion polymerization the reaction order is significantly above 0.6. This was ascribed to limited flocculation of polymer particles at low concentration of emulsifier, due to preferential location of emulsifier in the monomer phase. Polymerization in the large particles deviates from the zero-one approach but the pseudo-bulk kinetics can be operative. The thick interfacial layer can act as a barrier for entering radicals due to which the radical entry efficiency and also the rate of polymerization are depressed. The high oil-solubility of non-ionic emulsifier decreases the initial micellar amount of emulsifier available for particle nucleation, which induces non-stationary state polymerization. The continuous release of emulsifier from the monomer phase and dismantling of the non-micellar aggregates maintained a high level of free emulsifier for additional nucleation. In the mixed ionic/non-ionic emulsifiers, the released non-ionic emulsifier can displace the ionic emulsifier at the particle surface, which then takes part in additional nucleation. The non-stationary state polymerization can be induced by the addition of a small amount of ionic emulsifier or the incorporation of ionic groups onto the particle surface. Considering the ionic sites as no-adsorption sites, the equilibrium adsorption layer can be thought of as consisting of a uniform coverage with holes. The de-organization of the interfacial layer can be increased by interparticle interaction via extended PEO chains--a bridging flocculation mechanism. The low overall activation energy for the sterically stabilized emulsion polymerization resulted from a decreased barrier for entering radicals at high temperature and increased particle flocculation.  相似文献   

7.
Radiation-induced emulsion copolymerization of tetrafluoroethylene with propylene was carried out by batch operation with an initial molar ratio of tetrafluoroethylene to propylene of 3.0 in the emulsifier concentration range of 0.1 to 3.0% and in the dose rate range of 2 × 104 to 2 × 105 R/hr. The effects of emulsifier concentration and dose rate on the polymerization rate and the number-average degree of polymerization are discussed in comparison with the Smith-Ewart theory. The polymerization rate is proportional to the 0.26 power of emulsifier concentration and to the 0.7 power of dose rate. The degree of polymerization is independent of the emulsifier concentration and the dose rate above the critical micelle concentration (CMC) of the emulsifier. These results are not in agreement with the Smith-Ewart theory. It is explained that the termination reaction is a degradative chain transfer of propagating radicals to propylene. On the other hand, the copolymerization in emulsion occurs either below the CMC or in the absence of emulsifier. Under these conditions, however, it is impossible to obtain a copolymer of high molecular weight at a high rate of polymerization because of the presence of a small number of polymer particles formed and the short interval of chain growth in the polymer particle.  相似文献   

8.
Seeded emulsion copolymerization of an azeotropic composition of styrene (St) and an acrylinitrile (AN) comonomer mixture in polystyrene (PS) seed at different polymerization temperature of 55–75°C were investigated. The kinetic data showed a transition temperature at 65°C, above which the activation energy of polymerization is low, 6.1 Kcal/mol, compared with 9.8 Kcal/mol below it. The particle-size results and thin layer chromatographic (TLC) data showed two types of particle of different composition and morphology in the final latex system: a smaller size of (St–AN) copolymer and a larger size of core-PS and (St–AN) copolymer shell, with a zone of PS grafted (St–AN) copolymer in between. Various polymerization parameters, that is emulsifier concentration, type of seed particle and its size, and monomer/polymer ratio, were studied and their effects on particle size and particle morphology were examined. The percent of grafted core-PS was 10% below a polymerization temperature of 65°C and 40% above that temperature. By adjusting the size and number of the seed particles, monomer-polymer ratio, and emulsifier concentration conditions were established in which a final copolymer latex with “perfect” core-shell morphology was achieved.  相似文献   

9.
The radiation-induced emulsion polymerization of ethylene in a continuous flow system was carried out at 100°C by using FC-143 and potassium myristate. The polymer concentration in the latex during the course of the polymerization oscillated several times and then approached a steady-state value in a few hours in the case of short residence time. The rate of polymerization was almost constant within the residence time range of 0.2–0.9 hr. This is explained by the kinetics assuming the same mechanism previously proposed in the batch system, that is, the number of polymer particles in this range is considered to be constant. Gel formation was observed at longer reaction times in spite of the continuous supply of myristate micelles, possibly because large polymer particles are produced in this stage. The concentration of carbonyl group in the polymer produced by chain transfer to absorbed myristate ion changes in the same way as the polymer concentration with reaction time. The methyl group in the polymer is produced mainly by chain transfer to the polymer, and the concentration is nearly constant during the polymerization except in the initial stage. The rate constants for the continuous polymerization were very different from the batch polymerization previously studied, despite their similarities in nature. The mass transfer rate of the emulsifier from the micelles to the polymer particles requires future study.  相似文献   

10.
The stability of PTFE latex prepared in the absence of emulsifier by radiation-induced polymerization was investigated by electrophoresis and conductometric titration. The storage stability depends on total dose rather than dose rate, and the stable latex can be obtained in the region log D > 0.026 V1 ? 0.6, where D is the total dose (104 rad) and V1 is a polymer concentration in latex (g/liter). The stability increases only during polymerization in the presence of enough TFE monomer. The ζ potential of the latex particles lies in the region from ?25 to ?50 mV in an as-polymerized state (near pH 3) and from ?50 to ?65 mV at pH 10. The number of carboxyl end groups and surface charge density were examined by conductometric titration with NaOH and calculation from the G values of radiolysis of water. All the surface charge densities measured by conductometric titration are larger than those calculated from the G values. These results suggest that some acids have been formed on the surface of the particles. The acids may be the carboxyl end groups of polymer chains or hydrofluoric acid (HF) adsorbed on the surface. PTFE particles prepared in this polymerization system are stabilized mainly due to the carboxyl end groups and adsorptions of OH? and HF on the particles.  相似文献   

11.
张凯  黄春保  沈慧芳  陈焕钦 《应用化学》2010,27(10):1144-1148
采用乳液聚合法将甲基丙烯酸甲酯(MMA)接枝到氯丁胶乳上,红外光谱和核磁共振氢谱证实了接枝产物的生成。 研究了反应温度、乳化剂浓度、引发剂浓度和单体浓度对表观聚合速率的影响。 结果表明,当反应温度为50 ℃,引发剂叔丁基过氧化氢 四乙烯五胺(t-BHP/TEPA)用量为氯丁胶乳干重的0.5%,单体/聚合物质量比m(M)∶m(P)=3∶5,乳化剂十二烷基连苯醚二磺酸钠(DSB)用量为单体总质量1%时,单体转化率和接枝效率分别为99.1%和54.9%。 聚合反应动力学关系式为:Rp=Kc(E)0.15c(I)0.30c(MMA)1.41,式中,K为常数,在40~55 ℃范围内,聚合反应的表观活化能Ea=60.2 kJ/mol。 接枝聚合基本符合自由基反应机理。  相似文献   

12.
The emulsion polymerization of vinyl acetate using potassium persulfate and cyclohexanone sodium bisulfite as redox pair initiation system was studied. The rate of polymerization, maximum conversion, and the number of polymer particles produced were found to change with redox initiator, monomer and emulsifier concentrations, and temperature variation. The rate of polymerization was found to be dependent on the initiator, the monomer, and the emulsifier concentrations to the 0.88, 0.22, and 0.20 powers, respectively. The K2S2O8–NaHSO3 redox system was found to decrease maximum conversion and doesn't form a stable emulsion. The apparent arrhenius activation energy (Ea) estimated for the polymerization system was 65.6 kJ/mol. The viscosity average molecular weights for some obtained poly(vinyl acetate) were determined.  相似文献   

13.
The emulsion polymerization of methyl methacrylate (MMA) and styrene (St) were investigated with using polyamidoamine (PAMAM) dendrimer as seed, potassium persulfate as initiator and sodium dodecyl sulfate as emulsifier. The effects of 4.0GPAMAM dendrimer concentration, initiator concentration, emulsifier concentration, monomer concentration, and polymerization temperature on the monomer conversion and polymerization rate were investigated. At the same time, the influence of the generation of PAMAM dendrimer on latex particle size was studied also. The results showed that the monomer conversion and polymerization rate increased with increasing initiator concentration, emulsifier concentration, monomer concentration, and polymerization temperature. But polymerization rate increased firstly with an increase in the 4.0GPAMAM dendrimer from 0.03 g to 0.09 g and then decreased with further increase to 0.12 g. When the concentration of 4.0GPAMAM dendrimer less than 1.449 × 10?4 mol/L, the kinetic equation can be expressed by Rp∝[4.0GPAMAM]0.772[SDS]0.562[KPS]0.589[M]0.697, and the activation energy (Ea) of emulsion polymerization is 62.56kJ/mol. In additional, the copolymer latex particle size decreased and possessed monodispersity with increasing the generation of PAMAM dendrimer. According to FT-IR spectrum analysis, PAMAM dendrimer is successfully incorporated into the poly(PAMAM-St–MMA) latex particles.  相似文献   

14.
The radiation-induced polymerization of hexafluoropropylene was studied in the pressure and temperature ranges of 4,500–15,000 atm. and 100–230°C., respectively. Retardation was a serious problem; data thought to apply to the unretarded polymerization are summarized below. At 1,500 rad/hr. the polymerization rate was 15%/hr. at 230°C. and 15,000 atm. The activation enthalpy and volume are 9.5 kcal./mole and ?10 cc./mole, respectively. The rate varies as the square root of the radiation intensity. The largest intrinsic viscosity of the polymer is 2.0 dl./g.; values increase with temperature and pressure. At 130°C. and 10,000 atm. the intrinsic viscosity was the same at two radiation intensities.  相似文献   

15.
Radiation-induced emulsion polymerization of ethylene with ammonium perfluoro-octanoate as an emulsifier was studied in order to elucidate the effect of the number of polymer particles. Owing to the stable structure of the emulsifier from a radical attack, no C? F bond was detected in the polyethylene as expected. The polyethylene produced was mostly gel containing a small amount of low molecular weight polyethylene. This may be attributable to chain transfer to the polyethylene. The effects of dose rate and of concentration of the emulsifier were determined without considering the chain-transfer reaction to the emulsifier. By considering the escape of the radical which is produced by chain transfer to the monomer from the polymer particle to the aqueous phase at the steady state, the following equation is derived: The experimental results could be explained by this equation, and the apparent rate constants were obtained.  相似文献   

16.
The γ-radiation-induced polymerization of ethylene with the use of liquid carbon dioxide as a solvent, was studied from the viewpoint of kinetics. The polymerization was carried out at conversions less than 10% under the pressure ranging from 100 to 400 kg./cm.2, dose rates 1.3 × 104?1.6 × 105 rad/hr., and temperatures of 20–90°C. The concentration of carbon dioxide varied up to 84.1 mole-%. The polymerization rate and the polymer molecular weight were observed to increase with reaction time. This observation, however, becomes less pronounced with increasing concentration of carbon dioxide and with rising temperature. The exponents of the pressure and the dose rate were determined to be 2.3 and 0.85 for the rate, and 2.0 and ?0.20 for the molecular weight, respectively. From the kinetic considerations for these results, the effect of carbon dioxide on the initiation and termination reaction in the polymerization was evaluated.  相似文献   

17.
The addition of a small amount of monomer strongly decreased the clouding temperature of nonionic emulsifier (Tween 20). The clouding temperature of the Tween 20 aqueous solution was independent of emulsifier concentration but it strongly varied in the presence of monomer. The decreased cloud temperature was attributed to the penetration of monomer molecules into the interfacial layer that increased the flocculation of microdroplets (monomer-swollen micelles). The surface tension of homogenized ((mini)emulsion) butyl acrylate aqueous emulsion was much smaller than that estimated at or above CMC of Tween 20. The polymerization rate vs. conversion curve of the (mini)emulsion deviates from the three rate intervals typical for the emulsion polymerisation. The shape of the rate-conversion curve reminds more the four rate intervals curve. Interval 2 is overlapped with the initial maximal rate and rate shoulder at higher conversion. The initial maximal polymerization rate (Rp,max,1) is attributed to the abrupt increase in polymer particles, the polymerization under monomer saturated condition and emulsifier containing peroxide groups (Twperoxid 20). The rate of emulsion polymerization of BA initiated by ammonium peroxodisulphate (APS) is ca. by one order of magnitude larger than that of blank polymerization (without APS). The second maximal rate (rate shoulder) can result from the gel effect. The more pronounced increase in Rp,max,1 with Tw 20 concentration supports the presence of peroxide groups. The slight dependence of Rp,max,2 on [Tw 20] for both APS and DBP (dibenzoyl peroxide) is discussed in terms of the depressed radical entry rate into the close packed surface later of polymer particles. The low activation energy is attributed to the decreased barrier for entering radicals into the polymer particles with increasing temperature. This is more pronounced with the accumulation of covalently bound emulsifier moieties (resulting from Twperoxid 20) at the particle surface. The ratio of the final number of polymer particles to the initial number of monomer droplets (Np/Ndrop) promotes the partial monomer droplet nucleation. The dye approach indicates that the degree of depletion of monomer droplets decreases from the classical emulsion polymerization to the polymerization in pre-homogenized emulsions and the emulsion polymerization with a prolonged-emulsification interval.  相似文献   

18.
Particle formation and particle growth compete in the course of an emulsion polymerization reaction. Any variation in the rate of particle growth, therefore, will result in an opposite effect on the rate of particle formation. The particle formation in a semibatch emulsion polymerization of styrene under monomer‐starved conditions was studied. The semibatch emulsion polymerization reactions were started by the monomer being fed at a low rate to a reaction vessel containing deionized water, an emulsifier, and an initiator. The number of polymer particles increased with a decreasing monomer feed rate. A much larger number of particles (within 1–2 orders of magnitude) than that generally expected from a conventional batch emulsion polymerization was obtained. The results showed a higher dependence of the number of polymer particles on the emulsifier and initiator concentrations compared with that for a batch emulsion polymerization. The size distribution of the particles was characterized by a positive skewness due to the declining rate of the growth of particles during the nucleation stage. A routine for monomer partitioning among the polymer phase, the aqueous phase, and micelles was developed. The results showed that particle formation most likely occurred under monomer‐starved conditions. A small average radical number was obtained because of the formation of a large number of polymer particles, so the kinetics of the system could be explained by a zero–one system. The particle size distribution of the latexes broadened with time as a result of stochastic broadening associated with zero–one systems. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3940–3952, 2001  相似文献   

19.
The sterically stabilized emulsion polymerization of styrene initiated by a water‐soluble initiator at different temperatures has been investigated. The rate of polymerization (Rp) versus conversion curve shows the two non‐stationary‐rate intervals typical for the polymerization proceeding under non‐stationary‐state conditions. The shape of the Rp versus conversion curve results from two opposite effects—the increased number of particles and the decreased monomer concentration at reaction loci as the polymerization advances. At elevated temperatures the monomer emulsion equilibrates to a two‐phase or three‐phase system. The upper phase is transparent (monomer), and the lower one is blue colored, typical for microemulsion. After stirring such a multiphase system and initiation of polymerization, the initial coarse polymer emulsion was formed. The average size of monomer/polymer particles strongly decreased up to about 40% conversion and then leveled off. The initial large particles are assumed to be highly monomer‐swollen particles formed by the heteroagglomeration of unstable polymer particles and monomer droplets. The size of the “highly monomer” swollen particles continuously decreases with conversion, and they merge with the growing particles at about 40–50% conversion. The monomer droplets and/or large highly monomer‐swollen polymer particles also serve as a reservoir of monomer and emulsifier. The continuous release of nonionic (hydrophobic) emulsifier from the monomer phase increases the colloidal stability of primary particles and the number of polymer particles, that is, the particle nucleation is shifted to the higher conversion region. Variations of the square and cube of the mean droplet radius with aging time indicate that neither the coalescence nor the Ostwald ripening is the main driving force for the droplet instability. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 804–820, 2003  相似文献   

20.
采用十二烷基二甲基苄基氯化铵(1227)乳化剂,对丙烯酸丁酯(BA)-苯乙烯(St)进行乳液共聚,研究了影响聚合速度的各种因素,得出了聚合速率方程和表观活化能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号