首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
结构色在自然界中扮演了重要的角色,在昆虫外骨骼、鸟类羽毛以及植物果实中广泛分布.纤维素纳米晶体(CNCs)的水悬浮液达到一定浓度时会自组装形成左旋的手性向列液晶结构,这种手性向列结构在水分挥发后仍能保持并形成光子晶体虹彩薄膜,具有极强的手性和光子晶体的双重性质.膜内的周期性层状结构与光线产生干涉、衍射作用,表现出复杂的...  相似文献   

2.
Zhao Y  Xie Z  Gu H  Zhu C  Gu Z 《Chemical Society reviews》2012,41(8):3297-3317
Natural structural color materials, especially those that can undergo reversible changes, are attracting increasing interest in a wide variety of research fields. Inspired by the natural creatures, many elaborately nanostructured photonic materials with variable structural colors were developed. These materials have found important applications in switches, display devices, sensors, and so on. In this critical review, we will provide up-to-date research concerning the natural and bio-inspired photonic materials with variable structural colors. After introducing the variable structural colors in natural creatures, we will focus on the studies of artificial variable structural color photonic materials, including their bio-inspired designs, fabrications and applications. The prospects for the future development of these fantastic variable structural color materials will also be presented. We believe this review will promote the communications among biology, bionics, chemistry, optical physics, and material science (196 references).  相似文献   

3.
Reflectins are a unique group of structural proteins involved in dynamic optical systems in cephalopods that modulate incident light or bioluminescence. We describe cloning, structural characterization, and optical properties of a reflectin-based domain, refCBA, from reflectin 1a of Hawaiian bobtail squid, Euprymna scolopes. Thin films created from the recombinant protein refCBA display interesting optical features when the recombinant protein is appropriately organized. RefCBA was cloned and expressed as a soluble protein enabling purification, with little structural organization found using Fourier transform infrared spectroscopy and circular dichroism. Single-layer and multi-layer thin films of refCBA were then produced by flow coating and spin coating, and displayed colors due to thin film interference. Diffraction experiments showed the assemblies were ordered enough to work as diffraction gratings to generate diffraction patterns. Nano-spheres and lamellar microstructures of refCBA samples were observed by scanning electron microscopy and atomic force microscopy. Despite the reduced complexity of the refCBA protein compared to natural reflectins, unique biomaterials with similar properties to reflectins were generated by self-assembled reflectin-based refCBA molecules. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2013  相似文献   

4.
The synthesis, structure, optical and photocatalytic studies of a family of compounds with the general formula, BiMXO5; M=Mg, Cd, Ni, Co, Pb, Ca and X=V, P is presented. The compounds were prepared by regular solid‐state reaction of constituents in the temperature range of 720–810 °C for 24 h. The compounds were characterized by powder X‐ray diffraction (PXRD) methods. The Rietveld refinement of the PXRD patterns have been carried out to establish the structure. The optical absorption spectra along with the colors in daylight have been explained employing the allowed d‐d transition. In addition, the observed colors of some of the V5+ containing compounds were explained using metal‐to‐metal charge transfer (MMCT) from the partially filled transition‐metal 3d orbitals to the empty 3d orbitals of V5+ ions. The near IR (NIR) reflectivity studies indicate that many compounds exhibit good NIR reflectivity, suggesting that these compounds can be employed as ‘cool pigments’. The experimentally determined band gaps of the prepared compounds were found to be suitable to exploit them for visible light activated photocatalysis. Photocatalytic C?C bond cleavage of alkenes and aerobic oxidation of alcohols were investigated employing visible light, which gave good yields and selectivity. The present study clearly demonstrated the versatility of the Paganoite family of compounds (BiMXO5) towards new colored inorganic materials, visible‐light photocatalysts and ‘cool pigments’.  相似文献   

5.
Materials with tunable emission colors has attracted increasing interest in both fundamental research and applications. As a key member of light-emitting materials family, lanthanide doped upconversion nanoparticles (UCNPs) have been intensively demonstrated to emit light in any color upon near-infrared excitation. However, realizing the trichromatic emission in UCNPs with a fixed composition remains a great challenge. Here, without excitation pulsed modulation and three different near-infrared pumping, we report an experimental design to fine-control emission in the full color gamut from core–shell-structured UCNPs by manipulating the energy migration through dual-channel pump scheme. We also demonstrate their potential application in full-color display. These findings may benefit the future development of convenient and versatile optical methos for multicolor tuning and open up the possibility of constructing full-color volumetric display systems with high spatiotemporal resolution.  相似文献   

6.
For the last decade, the fabrication of ordered structures of phage has been of great interest as a means of utilizing the outstanding biochemical properties of phage in developing useful materials. Combined with other organic/inorganic substances, it has been demonstrated that phage is a superior building block for fabricating various functional devices, such as the electrode in lithium‐ion batteries, photovoltaic cells, sensors, and cell‐culture supports. Although previous research has expanded the utility of phage when combined with genetic engineering, most improvements in device functionality have relied upon increases in efficiency owing to the compact, more densely packable unit size of phage rather than on the unique properties of the ordered nanostructures themselves. Recently, self‐templating methods, which control both thermodynamic and kinetic factors during the deposition process, have opened up new routes to exploiting the ordered structural properties of hierarchically organized phage architectures. In addition, ordered phage films have exhibited unexpected functional properties, such as structural color and optical filtering. Structural colors or optical filtering from phage films can be used for optical phage‐based sensors, which combine the structural properties of phage with target‐specific binding motifs on the phage‐coat proteins. This self‐templating method may contribute not only to practical applications, but also provide insight into the fundamental study of biomacromolecule assembly in in vivo systems under complicated and dynamic conditions.  相似文献   

7.
We theoretically characterize a series of substituted cycloparaphenylene nanohoops to study the effect of incorporating an electron‐withdrawing group into their cyclic structure. We systematically vary the nature, position, and number of nitrogen‐containing acceptor groups in both neutral (pyridine) and charged forms (pyridinium and methylpyridinium) to provide insights into how this functionalization affects the structural, electronic, and optical properties of these systems. We focus also on the singlet‐triplet energy difference, with low values found, which might pave the way to further applications in the field of devices for light‐emitting applications providing a potential class of TADF‐based emitters.  相似文献   

8.
A periodically ordered interconnecting porous structure can be embodied in chemical gels by using closest‐packed colloidal crystals as templates. The interconnecting porosity not only provides a quick response but also endows the porous gels with structural color arising from coherent Bragg optical diffraction. The structural colors revealed by porous gels can be regulated by several techniques, and thus, it is feasible to obtain desirable, smart, soft materials. A well‐known thermosensitive monomer, N‐isopropylacrylamide (NIPA), and other minor monomers were used to fabricate various structural colored gels. The selection of minor monomers depended on the targeted properties. This review focuses on the synthesis of templates, structural colored porous gels, and the applications of structural colored gel as smart soft materials for tunable photonic crystals. © 2009 The Japan Chemical Journal Forum and Wiley Periodicals, Inc. Chem Rec 9: 87–105; 2009: Published online in Wiley InterScience ( www.interscience.wiley.com ) DOI 10.1002/tcr.20169  相似文献   

9.
Spherical photonic crystals (PCs), generated by assembly of monodisperse colloidal nanospheres in a spherical confined geometry, attract great attention recently owing to their potential applications in the fields of displays, sensors, optoelectronic devices, and others. Compared to their conventional film or bulk counterparts, the optical stop band of the spherical PCs is independent of the rotation under illumination of the surface of a fixed incident angle of the light, broadening their applications. In this paper, we will review recent advances in the field of spherical PCs including design, preparation and potential applications. Various preparation strategies for spherical PCs, including solvent-evaporation induced crystallization method, microfluidic-assisted approach, and others are outlined. Their applications based on the unique optical properties (such as photonic band gaps and structural colors) for sensing and displaying are then presented, followed by the perspective of this emerging field.  相似文献   

10.
Ordered 2-D structures composed of poly(N-isopropylacrylamide) (PNIPAM) microgel particles that had regularity on a sub-micrometer length scale were prepared. By using sterically stabilized PNIPAM microgel particles as components, the ordered array was formed by a self-assembly process. The particle array was prepared by depositing a droplet of the microgel dispersion on a substrate. Atomic force microscopy observation of the resulting thin films revealed that they comprised a monolayer particle array. The periodic structure of the array produced iridescent colors due to optical diffraction. Since a homogeneous particle array can be prepared simply by drying the dispersion, this particle dispersion may be considered as a new ink whose color is generated from the microstructure in the films produced.  相似文献   

11.
Electron microscope images of parallel arrays of Ramie cellulose protofibrils, obtained at various levels of defocus, are discussed in terms of phase contrast. The optical diffraction pattern of appropriately defocused images shows discrete maxima in the resolution range of 2–5 nm. The pattern is dominated by strong equatorial reflections arising from the lateral spacing of the protofibrils which is about 5 nm. From the observed reciprocal lattice net, it is concluded that the protofibrils are characterized by some form of axial texture that repeats with a periodicity of about 6 nm. The lattice reflections in the optical diffraction pattern are shown to be essentially invariant over a wide range of defocusing conditions. From this it is inferred that the pattern arises from real object order. It is emphasized that the optical diffraction pattern derives from gross structural features related to the morphology of the protofibrils and not from their internal structure.  相似文献   

12.
The study of piezochromic materials (PCMs) has become an attractive field and numerous scholars have reported various material structures and phenomena. PCMs incorporating near-infrared (NIR) emission have led to a broader range of applications due to the strong penetration and interference resistance of longer wavelength light sources. However, NIR PCMs are still rare due to difficulties in tuning molecular configuration, conformation and stacking structure. In this review, organic compounds are classified according to their types and structures, and recent advances in NIR PCMs are comprehensively summarized and described. The various factors affecting the piezochromic properties from the perspective of the compound structure are shown. The effects of pressure on the photophysical changes of different compounds are discussed. It is expected to provide ideas for subsequent NIR PCMs, from structural design to predicting their photophysical properties under pressure.  相似文献   

13.
A series of new polyamides containing tetraphenyl thiophene having pendant phenyl moiety with heterocyclic quinoxaline unit were synthesized by using the solution polycondensation method of novel diamine monomer V with isopthaloyl chloride (IPC) and terpthaloyl chloride (TPC) in various mole proportions. These novel polymers were characterized by FT-IR, solubility, inherent viscosity, thermal analysis and X-ray diffraction studies. Inherent viscosities of these polymers were in the range 0.66 to 1.44 dL/g indicating moderate to high molecular weight built-up. These polymers exhibited solubility in various solvents such as DMAc, NMP, pyridine, m-cresol etc. X-ray diffraction pattern of polymers showed that introduction of pendant phenyl moiety would disturb the chain regularity and packing, leading to amorphous nature. Thermal analysis by TGA and DSC showed excellent thermal stability of polymers. The structure -property correlation among these polyamides were studied, in view of these polymer's potential applications as processable high temperature resistance materials.  相似文献   

14.
免标记光学生物传感器研究进展   总被引:1,自引:0,他引:1  
张爱芹  王嫚  张辉  金军  申刚义 《化学通报》2018,81(1):21-28,44
免标记光学生物传感器因分析样品无需标记、强特异性、动态测量、无损检测、分析速度快等诸多优点,在化学、药学及生物等诸多领域中得到了快速发展和广泛应用。本文重点介绍了当前发展成熟且具代表性的四种免标记光学生物传感器,即表面等离子体共振传感器、光波导光模光谱传感器、椭圆偏振光学传感器以及反射干涉传感器,对每种传感器的原理结构、方法发展及在生化分析等相关领域中的最新应用进行了总结和论述;在此基础上,对它们各自的性能进行了优劣比较;最后对免标记光学生物传感器的发展前景进行了展望。  相似文献   

15.
Melanins, a group of dark insoluble pigments found widespread in nature, have become the focus of growing interest in materials science for various biomedical and technological applications, including opto‐bioelectronics, nanomedicine and mussel‐inspired surface coating. Recent progress in the understanding of melanin optical, paramagnetic redox, and conductivity properties, including photoconductivity, would point to a revision of the traditional concept of structural disorder in terms of more sophisticated and interrelated levels of chemical complexity which however have never been defined and codified. Herein, we bring to focus the various levels of structural disorder that emerged from spectral and chemical signatures over the past decade. A revised approach to structure–property relationships in terms of intermolecular interactions is also provided that may pave the way towards the rational design of next‐generation melanin‐based functional materials.  相似文献   

16.
Photo-responsive cholesteric liquid crystals (CLCs) have attracted much attention in recent years due to their wide applications in filters,tunable optical lasers,dynamic display devices,etc.However,UV light is usually used as the external stimulus source,which is not environment-friendly enough.On the other hand,the mechanical properties of CLCs are not strong enough for these practical applications.Therefore,it still remains a challenge to endow the CLCs with visible light response and high mechanical properties at the same time.Herein,an axially chiral tetra-fluorinated binaphthyl azobenzene gelator (S-4F-AG) is synthesized.Upon 550 and 450 nm light irradiations,S-4F-AG exhibits excellent photo-switchable behaviors.Notably,the maximum content of cis-isomer and its half-life are as high as 35% and 89 h in acetonitrile,respectively.A self-supporting CLC physical gel with a storage modulus around 104 Pa can be obtained when 3wt% S-4F-AG and 12wt%binaphthyl azobenzene derivative (dopant 2) are co-doped into a nematic LC host P0616A.This CLC physical gel exhibits a temperature-driven blue,green,and red reflection colors reversibly.Importantly,such three primary RGB colors can also be realized by adjusting the exposure time of 550 nm green light.This work lays a solid foundation for the applications ranging from information storage to high-tech anticounterfeit.  相似文献   

17.
This article describes a simple method to fabricate uniform porous antireflective (AR) coatings composed of nanoflakes on the surface of soda lime glass through one-step hydrothermal alkali (NaOH) etching process. Experimental conditions including reaction temperature, NaOH concentration, and reaction time were investigated to find the optimal etching conditions, and the maximum transmittance increases from 90.5% to 98.5%. The coating thickness increases with increase in the NaOH concentration, leading to the tunable red-shift of transmission and reflection spectra in the UV and entire visible range. And the corresponding uniform structural reflected colors varying from gray, pale yellow, yellow, pink, blue to pale blue are observed when the etched glasses are viewed in reflected light. The relationship of coating thickness, transmittance, reflectance, and reflected color was obtained and discussed. The etched glass after introducing TiO(2) component onto the porous coating had AR, self-cleaning (superhydrophilic and photocatalytic) and antifogging properties. It is conceivable that such etched glasses would have broad potential applications in optical devices, solar cells, light emitting diodes, and varied window glasses.  相似文献   

18.
Acetoacetoxypropyl cellulose, formed by the acetoacetylation of hydroxypropyl cellulose using a diketene/acetone adduct at elevated temperature, forms both thermotropic and lyotropic liquid-crystalline phases. DSC and hot-stage polarized light microscopy confirmed the thermotropic nature of the bulk polymer. Thin layers showed green reflection colors at room temperature. The wavelength λ0 of selective reflection was measured spectrophotometrically. The crystalline structure of the polymer was investigated using x-ray diffraction. A lyotropic mesophase formed in acetic acid at ≥ 40 wt% polymer. The value of λ0 for the lyotropic cholesteric mesophase was determined by optical rotatory dispersion (ORD) and circular dichroism (CD) of a thin layer of a wholly anisotropic solution.  相似文献   

19.
Soft material hydrogel sensors have seen increased interest recently. Most of these sensors are used in an aqueous environment. In this study, we depart from this trend and analyze the ability of a periodic hydrogel structure to respond to variations in ambient humidity through an optical change. First, a polyacrylamide inverse opal hydrogel structure was created from a colloidal crystal template. Next, this material was tested under various humidity conditions and responded to these changes by shifting its optical reflection peak noticeably within the visible wavelength range. This effect opens the doors for these materials as humidity sensors. The kinetics of the peak shifts was also observed, showing a rapid response to ambient humidity changes. Finally, the structural dimension change is compared through peak shifts, Fabry-Perot fringes of the optical cavity, and scanning electron microscopy observations.  相似文献   

20.
In recent years, there has been immense interest in studying nanoscale aggregate structures derived from various polydiacetylenes (PDAs). The motivation for this is not only to understand the fundamental aggregate structures at different scales, but also to explore their potential for future technological applications. PDAs have been made sensitive to external stimuli such as light and chemical entities by incorporating a spectroscopically active moiety or a receptor unit as the head group of the PDA molecule. This makes them suitable for applications such as sensing and actuating. Furthermore, owing to the delocalization of π‐conjugated electrons, PDAs have been exploited as good candidates for organic nonlinear optical materials. This Focus Review highlights some of the instructive work done by various groups to develop well‐defined one‐dimensional assembly systems with a highly structural aspect ratio, which can be directly imaged by microscopic techniques.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号