首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
The temperature dependence of the actual viscosity of dilute poly(β-naphthyl methacrylate) solutions was described by an Arrhenius expression according to Moore's treatment. The apparent activation energy of flow was found to be lower for solutions in benzene, toluene and tetralin than for solvent. In dioxane, a good solvent, the activation energy was nearly constant and close to that for the solvent. The pre-exponential terms were, in all cases, higher for solutions than for the solvents. The decrease in activation energy and increase in pre-exponential term are largely dependent on solvent power: the maximum effect is found in the poorest solvent. This behaviour is discussed in connection with the temperature dependence of the Mark-Houwink and of the Fox-Flory constants obtained from intrinsic viscosity data: the differences in the activation energy of flow and in the pre-exponential term between the solvent and the solutions are related to variation of coil expansion with temperature.  相似文献   

2.
Semidilute polymer solutions differ greatly from dilute solutions in properties such as viscosity, relaxation time, elastic modulus, colloid osmotic pressure, and light scattering. Previously, Matsuoka and Cowman proposed a single semiempirical expression for the nonideality contribution due to the concentration and intrinsic viscosity dependence, which has no other adjustable parameters, but quantitatively fits data for flexible, semiflexible, and rigid polymers in good solvents. In this report, the excluded volume theory as proposed by Ogston and Laurent is generalized to include mutual crowding between identical polymers based on hydrodynamic volumes, and applied to derive the expression for the nonideality contribution to specific viscosity, colloid osmotic pressure, and light scattering. Additionally, consideration of the contribution of mutual macromolecular crowding to the effective solvent viscosity allows prediction of polymer relaxation time and elastic modulus in semidilute solutions. This theoretical approach now allows the prediction of semidilute polymer solution properties based only on concentration and intrinsic viscosity, and conversely allows intrinsic viscosity (and thus average molecular weight) to be calculated from measurements made on semidilute solutions of known concentration. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
The applicability to vinyl polymers of the procedure for quantitative determination of phthalide groups in polymeric molecules from the color of their sulfuric acid solutions was examined. The correlation between the intensity of the color of sulfuric acid solutions of polymers (polymethyl methacrylate, polystyrene) and the content of phthalide fragments incorporated into the polymer molecule was studied systematically on a quantitative level.  相似文献   

4.
A range of mixed ether-esters of cellulose was prepared from partially substituted ethylcellulose and methylcellulose. The 13C-NMR analysis of ethylcellulose with a DS of 2.5 indicated that the hydroxyl groups at carbon six of anhydroglucose units were completely substituted. Acetylation of the ethylcellulose under different conditions yielded (acetyl) (ethyl) cellulose (AEC) samples with acetyl degree of substitution ranging from 0 to 0.5. Fully substituted (propionyl) (ethyl) cellulose (PEC) and (acetyl) (methyl) cellulose (AMC) were also prepared. Chiral nematic liquid crystals were formed in these mixed ester/ethers of cellulose in concentrated solutions of acidic solvents. The critical concentration for the phase separation of the cellulosic solutions depended on the nature of the substituent, the degree of substitution, and the solvent at a given temperature. Methylcellulose solutions in trifluoroacetic acid and dichloroacetic acid form chiral nematic liquid crystals with a left-handed helicoidal structure. The acetylated methyl cellulose samples did not show the reversal of handedness with increasing acetyl content that was previously observed for the corresponding ethylcellulose samples. © 1994 John Wiley & Sons, Inc.  相似文献   

5.
(Acetyl) (ethyl) cellulose (AEC) polymers with an ethyl degree of substitution (DS) of 2.5 and acetyl DS ranging from 0 to 0.5 dissolve readily in a wide range of organic solvents and form chiral nematic liquid crystalline phases in concentrated solution. The chiroptical properties of these liquid crystals are strongly influenced by the acetyl content and solvent. In dichloromethane, dibromomethane, chloroform, bromoform, m-cresol, acetic acid, and aqueous phenol, the AEC lyotropic mesophases all show a handedness inversion as the acetyl DS of the polymers is increased, changing from left- to right-handed supermolecular helicoidal structures. The temperature dependence of the pitch for these mesophases is also reversed from negative to positive with increasing acetyl DS in all the above solvents except aqueous phenol, in which the corresponding AEC mesophases change from positive to negative. The optical microscopic, optical diffraction, and ORD evidence provide a unique indication that the reversal of the handedness and temperature dependence for the AEC mesophases occurs at a compensated degree of acetylation, DA*. The corresponding compensated mesophases show an infinite pitch and behave optically like nematic mesophases. The value of the DA* is dependent on solvent. In dichloroacetic acid, AEC liquid crystals remain right-handed, independent of the acetyl DS. At given concentration and temperature, the long pitch samples flow much more readily than short pitch samples. © 1994 John Wiley & Sons, Inc.  相似文献   

6.
Solution properties of poly[1(2-hydroxyethyl)pyridiniumbenzene sulfonate methacrylate] and poly[1(2-hydroxyethyl)trimethylammoniumbenzene sulfonate methacrylate] were studied. Within a certain concentration range of some added low molecular weight electrolytes, phase separation occurs. The dependence of intrinsic viscosity on molecular weight was determined and the steric factor estimated for both polymers. For nonaqueous solvents, an extrapolation of the dependence of the refractive index increment of the polymer on the refractive index of the solvent leads to an apparent refractive index of the polymer, different from the refractive index determined directly by the immersion method. Some peculiarities of light scattering in solutions with no electrolyte added are mentioned.  相似文献   

7.
The viscometric behaviour of poly(p-tert-butylphenyl methacrylate) in a binary mixture (acetone/cyclohexane) has been studied. This mixture presents a type of partial co-solvency (synergism) for this polymer: cyclohexane is a θ-solvent at 25° and acetone is very poor. The conformational parameter seems unaffected by the nature of this binary solvent mixture. The results are discussed in relation to the behaviour of the poly(p-tert-butylphenyl methacrylate) in some pure solvents, viz. acetone, cyclohexane and tetrahydrofuran. This viscometric behaviour is compared with that of polystyrene in the same mixture.  相似文献   

8.
Solution properties of poly[1(2-hydroxyethyl)pyridiniumbenzene sulfonate methacrylate] and poly[1(2-hydroxyethyl)trimethylammoniumbenzene sulfonate methacrylate] were studied. Within a certain concentration range of some added low molecular weight electrolytes, phase separation occurs. The dependence of intrinsic viscosity on molecular weight was determined and the steric factor estimated for both polymers. For nonaqueous solvents, an extrapolation of the dependence of the refractive index increment of the polymer on the refractive index increment of the polymer on the refractive index of the solvent leads to an apparent refractive index of the polymer, different from the refractive index determined directly by the immersion method. Some peculiarities of light scattering in solutions with no electrolyte added are mentioned.  相似文献   

9.
Fluorine-containing hydrophobically associating polymers have been synthesized by copolymerization of acrylamide with a small amount of an acrylate or methacrylate having a fluorocarbon containing ester group. It was found that hydrophobic associations occurring between these fluorocarbon chains was stronger than the interactions of the corresponding hydrocarbon comonomers and depend on the length of the fluorocarbon chain. The rheological properties of the copolymer solutions were studied. The solutions were found to be highly pseudoplastic but the viscosity loss was completely reversible upon removal of shear. Evidence for hydrophobic association of the fluorocarbon groups was obtained by the dependence of the Brookfield viscosity on temperature, the addition of NaCl, and the addition of organic solvents, urea, and surfactants.  相似文献   

10.
Cohen-Turnbull diffusion theory is used to develop a model for predicting solvent self-diffusion coefficients D1 in nonglassy polymer/solvent solutions. Polymer molecules are envisioned as hindering solvent mobility by reducing the average free volume per unit mass in the system and through the lower mobility of polymer segments relative to solvent molecules. The concentration dependence of D1 predicted by the model is in reasonable agreement with data for the solvents heptane, hexadecane, benzene, cyclohexane, and decalin in polyisobutylene (PIB), and for toluene in polystyrene, poly(methyl mothacrylate), and PIB. Although none of the data is for high concentrations of polymer (volume fractions ?≥0.9) it is anticipated the model will be less representative in this regime where the assumptions in its development are unsure. The model also demonstrates the correct temperature and concentration dependence of the apparent activation energy for diffusion. The only experimental data needed to use the model are the viscosity and critical volume of the pure solvent, and the specific volume of both the solvent and mixture. No binary transport data are required.  相似文献   

11.
A novel method for the characterization of polymers by laser desorption/ionization on the layer of graphene nanoparticles coupled with time-of-flight mass spectrometry was demonstrated. Various polymers including polypropylene glycol, polystyrene and polymethyl methacrylate with average molecular weights from 425 to 3500 Da were analyzed.  相似文献   

12.
On axial extension of polymer melts at constant deformation rates, the development of high-elastic deformation is of predominant importance during the initial period. High-elastic deformation is accompanied by a rise in viscosity and in the modulus of high-elasticity and by retardation of the relaxation processes in the region of large relaxation times. At relatively low deformation rates, the rise in viscosity and high-elasticity modulus and the retardation of relaxation processes may give way to a decrease in viscosity and high-elasticity modulus and acceleration of relaxation processes, so that stationary flow regimes are attained. The transition from strain regimes with increasing viscosity and modulus of high elasticity to those with a decrease of these quantities corresponds to an increase in the rate of accumulation of irreversible deformation. Accordingly, a competing influence due to the orientation effect and to destruction of the network of intermolecular bonds becomes evident while stationary flow is being attained. The orientation effect must be responsible for the retardation of the relaxation processes, whereas rupture of the intermolecular network bonds results in structural relaxation accelerating relaxation processes. In contrast to shearing, during extension the orientation effect is of predominant importance. Hence in stationary flow regimes the viscosity may not only remain independent of the rate of strain, but even increase with it. In this case the contribution of the large relaxation times to the relaxation spectrum increases with increasing stress in stationary flow regimes. The fact that the longitudinal viscosity and the modulus of high elasticity are independent of the stress in stationary flow regimes does not guarantee linearity of the mechanical properties of the polymer in the prestationary stage of deformation when complex changes occur in its relaxation characteristics. At high deformation rates the viscosity and the modulus of high elasticity keep rising with increasing deformation until rupture occurs. Determination of the strength of polystyrene samples vitrified after extension showed that it is due not to the entire degree of extension, but only to the value of accumulated high-elastic deformation. The strength of the vitrified samples is to a first approximation independent of the rate at which the melt was extended.  相似文献   

13.
Summary Structural and thermodynamic characteristics of liquid-crystalline solutions of four cellulose derivatives in a range of solvents were studied. Basic observations were made on these systems using polarized light microscopy, small angle light scattering, dilute solution and concentrated solution viscosities. The polymers studied include hydroxypropyl cellulose (HPC), cellulose acetate butyrate (CAB), ethyl cellulose (EC), and cellulose triacetate (CT). The formation of the liquid crystalline phase was shown to strongly depend on polymer concentration, solvent type and temperature. The critical volume fraction of polymer required to form the liquid crystal phase varied significantly as the solvent changed. The critical volume fraction decreased with increasing solvent acidity and polymer intrinsic viscosity in a given solvent. The breadth of the two phase region seems to decrease with increasing acidity. The liquid crystalline phase was in most cases determined to be cholesteric. In all cases positively birefringent cellulose derivatives form negative spherulitic domains. In one case, the negativity birefringent system (cellulose triacetate) formed positively birefringent spherulitic liquid crystalline domains. This is interpreted to mean the structure organizes itself by a tangential alignment of polymer chains within the domain. SALS measurements appear to detect domains and in some cases cholesteristic pitch.With 5 figures and 4 tables  相似文献   

14.
The preferential solvation of ternary systems of polymer with mixed solvents is characterized by the λ′ parameter which depends on the thermodynamic properties of the system and also on some molecular parameters of the polymer (molecular weight, index of polydispersity, index of branching etc.). The dependence of λ′ on molecular parameters can be illustrated by a unique relation between the λ′ parameter and the intrinsic viscosity [η]:λ′[η] = λ [η] + a′ +. This representation is verified for polystyrene and polymethyl methacrylate in several mixed solvents.  相似文献   

15.
The thickness of films of poly(methyl methacrylate) (PMMA), poly(vinyl acetate) (PVAc), and polystyrene (PS) adsorbed on Pyrex glass was studied by measuring the flow rates of polymer solutions and the corresponding pure solvents through sintered filter disks. Adsorption isotherms were in agreement with those reported by other workers and showed saturation adsorption equivalent to 2–8 condensed monolayers of monomer units. Film thicknesses were of the order of magnitude of the free coil diameters in solution and were directly proportional to the intrinsic viscosity of the polymer, except for PS in benzene where the thicknesses leveled off as molecular weight increased. It was concluded that polymers adsorb from solution in monolayers of compressed or interpenetrating coils; that below some critical molecular weight which varies with polymer and solvent, a much larger fraction of the segments lies directly in the interface; that adsorbed films may consist of a dense layer immediately adjacent to the surface and a deep layer of loops extending into the solvent; and that it is the segment—solvent interaction rather than the segment—surface interaction which dominates the conformation of the adsorbed chain.  相似文献   

16.
The success of matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry for the characterization of polymer structures and for the determination of average molecular weights and distributions depends on the use of a proper sample/matrix preparation protocol. This work examines the effect of solvents, particularly solvent mixtures, used to prepare polymer, matrix, and cationization reagent solutions, on MALDI analysis. It is shown that the use of solvent mixtures consisting of polymer solvents does not have a significant effect on the molecular weight determination of polystyrene 7000 and poly(methyl methacrylate) 3750. However, solvent mixtures containing a polymer nonsolvent can affect the signal reproducibility and cause errors in average weight measurement. This solvent effect was further investigated by using confocal laser fluorescence microscopy in conjunction with the use of a fluorescein-labeled polystyrene. It is demonstrated that sample morphology and polymer distribution on the probe can be greatly influenced by the type of solvents used. For sample preparation in MALDI analysis of polymers, it is important to select a solvent system that will allow matrix crystallization to take place prior to polymer precipitation. The use of an excess amount of any polymer nonsolvent should be avoided.  相似文献   

17.
The intrinsic viscosity of a polymer in a solvent mixture is related to the excess free energy of the solvents. Intrinsic viscosities at different temperatures are obtained for poly-2-vinylpyridine–chloroform–ethyl alcohol, poly(methyl methacrylate)–chloroform–ethyl alcohol, polystyrene–cyclohexane–benzene, polystyrene–dioxane–chloroform, and polystyrene–cyclohexane–ethanol. Qualitative, but not quantitative, agreement is found between theory and experiment.  相似文献   

18.
The chromatographic behaviour of 48 alkaloids on cation exchangers with cellulose, paraffin and polystyrene matrices in both the acid and sodium salt forms has been investigated. Water-organic solvent mixtures, aqueous buffer solutions and organic and mineral acid solutions in both water and in aqueous-organic solvents have been used as eluents. The retention mechanisms of these compounds on alginic acid, Rexyn 102 (Hplus) and Dowex 50-X4 (Hplus) thin layers are discussed. Interesting separations of the alkaloids were carried out on alginic acid and Rexyn 102 (Hplus).  相似文献   

19.
In this work, correlations for the estimation of the infinite dilution activity coefficients of non-polar solvents in polystyrene (PS), poly(vinyl acetate) (PVAc), poly(n-butyl methacrylate) (PBMA), poly(dimethyl siloxane), poly(methyl methacrylate) (PMMA), poly(ethylene oxide) (PEO), poly(vinyl chloride) (PVC), polyisobutylene and polyethylene (PE), and that of polar solvents in PS, PVAc, PBMA, PMMA, PEO, PVC and PE are proposed. A total of 205 polymer/non-polar solvent systems with 1708 data points, and 118 polymer/polar solvent systems with 695 data points were used to develop the correlations. The overall average errors were 9.6% and 11.3%, respectively, significantly lower than other predictive models. Since the new correlations require only the connectivity indices of the solvents in the calculations, and the connectivity indices can be calculated easily once the molecular structure of the substance in question is known, they are easy to apply, and are useful for process design and development.  相似文献   

20.
Cellulose-synthetic polymer nanocomposite films were prepared by immersion of cellulose gel in polymer solutions followed by dry casting. The cellulose hydrogel was prepared from aqueous alkali-urea solution. As the synthetic polymer, polystyrene (PS) and poly(methyl methacrylate) (PMMA) were used. The polymer content could be changed between 10 and 80% by changing polymer concentration of immersing solution. While the mechanical properties of the cellulose-PMMA composite films showed a nearly linear dependence on PMMA content, those of cellulose-PS composites showed an anomalous behavior; both tensile strength and Young’s modulus showed prominent maxima at 15–30 wt% PS contents. This anomaly may have resulted from the specific interaction between the aromatic ring of PS and the hydrophobic plane of the glucopyranoside. Both PMMA and PS composite films showed significant improvements in dimensional thermal stability; up to 25 wt% synthetic polymer content, the coefficient of thermal expansion (CTE) was as low as ca. 30 ppm/K, about 1/3 of the pure polymers. This indicates that the regenerated cellulose network is effective in suppressing thermal expansion of the synthetic polymers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号