首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
K-band ESR spectra of 17O labelled Copper(II)oxyquinolinate (CuOX2) substituted in phthalimide single crystals and of Copper(II)picolinate (Cupic2) substituted in single crystals of Zinc picolinate tetrahydrate are reported. The spectra were analyzed as a superposition of spectra of 3 isotopic 16O, 17O species, yielding anisotropic hyperfine coupling tensors for the 17O ligands of the two complexes. The magnetic data will then be used for derivation of bonding parameters in a one hole MO scheme and of spin densities at oxygen ligands by two different approaches πo values of 0.13 and 0.085 (per oxygen atom) for CuOx2 and Cupic2 were found. f0p/f0s ratios amount to 11.0 and 8.7 for the two systems, respectively, thereby ranging considerably higher then found hitherto.  相似文献   

2.
The syntheses and 13C, 17O, 29Si and 31P NMR spectra of a series of Mo(CO)4((PPh2O)2Y(R)R′) (Y(R) = P(O), Si(Me); R′=alkyl, haloalkyl, aryl) and [Mo(CO)4(PPh2O)2]2Si complexes are given. The chemical shift ranges of the cis and trans carbonyl 13C and 17O, phenyl C(1) 13C and 31P resonances are relatively large and, with the exception of the cis carbonyl 17O chemical shifts, the correlations between the chemical shifts of the various resonances are excellent. These correlations are consistent with the model of metal carbonyl 13C and 17O chemical shifts proposed by Bodner and Todd. In addition they allow the model to be extended to include the diphenylphosphinite 31P chemical shifts in these complexes. The excellent correlations may be due to the presence of the chelate ring which limits the rotation around the molybdenum-phosphorus bond and to the fact that all three groups directly bonded to the phosphorus remains constant.  相似文献   

3.
57Fe Mössbauer emission spectra of the 57Co labeled complex compound [57Co(2-CH3-phen)3] (ClO4)2·2H2O have been measured as a function of temperature between 293 and 4.6 K. The spectra exclusively show high-spin iron(II) resonances beside a small fraction of an high-spin iron(II) species, whereas the corresponding iron(II) compound is known to exhibit thermally induced high-spin 5T2g(Oh) ? low spin 1A1g(Oh) transition. The electronic nature of the anomalous spin state has been found to be 5A1(D3) by a theoretical treatment of the temperature dependence of the quadrupole splitting. The results are in good agreement with those obtained from Mössbauer absorption measurements on [57Fe0.01Co0.99(2-CH3-(phen)3] (ClO4)2·2H2O.  相似文献   

4.
A new class of compounds of the family M(H2O)6(OPTA)2 (where M = Co(II), Ni(II), and Zn(II); OPTA = 1-oxopyridinium-2-thioacetato) was prepared from the appropriate metal acetates, 1-oxo-pyridinium-2-thioacetic acid (OPTAH), and potassium hydroxide in hydrothermal media and structurally characterized. The structure is constructed from M(H2O)6 2+ and two anions of OPTAH (C7H6NO3S) linked through hydrogen bonding into an extended network.  相似文献   

5.
Reaction of O,O’-diisopropylthiophosphoric acid isothiocyanate (iPrO)2P(S)NCS with diethyl 4-aminobenzylphosphonate (EtO)2P(O)CH2C6H4-4-NH2 leads to the new N-thiophosphorylated thiourea (EtO)2P(O)CH2C6H4-4-[NHC(S)NHP(S)(OiPr)2] (HL). Reaction of the potassium salt of HL with Zn(II), Cd(II) and Co(II) in aqueous EtOH leads to complexes of formula M(L-S,S’)2 (ML2). Heteroligand copper(I) complex of HL and triphenylphosphine was prepared by the reaction of the potassium salt KL and Cu(PPh3)3I. Copper in complex Cu(PPh3)L is bound by one PPh3 and one SCNPS fragment of the chelating ligand. Compounds obtained were investigated by IR, UV–Vis, 1H and 31P{1H} NMR spectroscopy, and microanalysis. The structures of HL and Cu(PPh3)L were investigated by single crystal X-ray diffraction analysis.  相似文献   

6.
Cystine forms metal complexes of general formula [MII(C6H10N2O4S2)]; where MII = Mn(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II), Hg(II), and Pb(II) in the aqueous medium. Before reacting with metal salts the ligand solution was neutralized by NaHCO3 solution. The complexes were formulated by comparing the C, H, N, S and metal analysis data. The prepared complexes were characterized by different physicochemical methods. The UV-vis, FTIR spectral analysis, magnetic susceptibility of these complexes are discussed. Cyclic voltammetric studies of some of the complexes are also reported.  相似文献   

7.
The compounds [Sc(H2O)4(NCS)2][Sc(H2O)2(NCS)4] ·2(18C6) (I) and [Sc(H2O)4(NCS)2][Sc(H2O)2(NCS)4] · 3(18C6) · H2O (II) were synthesized and studied by X-ray diffraction analysis. It was found that the cations in the structures of compounds I and II form sandwiches [Sc(H2O)4(NCS)2] · 2(18C6). In the case of I, the sandwiches are united by the [Sc(H2O)2(NCS)4] anions into chains, while in compound II, the sandwiches and infinite chains of [Sc(H2O)2(NCS)4] · 18C6 · H2O are bonded by van der Waals contacts only. Original Russian Text ? A.B. Ilyukhin, S.P. Petrosyants, 2007, published in Koordinatsionnaya Khimiya, 2007, Vol. 33, No. 4, pp. 275–281.  相似文献   

8.
Pyridine-2-carbonitrile (2-CNpy) undergoes Cu(II) or Co(II)-promoted hydrolysis to pyridine-2-carboxamide (piaH) and/or pyridine-2-carboxylic acid (pycH). The pathway of pycH formation depends on the presence of 2-amino-2-hydroxymethyl-1,3-propanediol (AL1) and on the central atom. In the absence of AL1, Co(II) or Cu(II) ions mediate piaH formation under mild reaction conditions in the first hydrolytic step. Cu(II) ions assist in piaH transformation to pycH by subsequent reflux. In the presence of AL1 and Co(II), a Co(II) complex containing pyoxaL1 (2-(2-pyridinyl)-4,4-bis(hydroxymethyl)-2-oxazoline) is formed in the first stage; subsequent decomposition of pyoxaL1 under the reflux yields pycH. Under similar conditions, no solid Cu(II) complex with pyoxaL1 can be isolated, but a Cu(II) complex with coordinated pyc anions precipitates from the reaction mixture. The synthesis, spectral and magnetic properties of the complexes [Co(H2O)2 (piaH)2]Cl2, [Co(H2O)2(pyc)2] · 2H2O, [Cu(H2O)2(piaH)2]Cl2, [Cu(pyc)2] and [Cu(pyc)2] · 2H2O, including the structure determination of the latter one, are described.  相似文献   

9.
The complexes of 4-chloro-2-methoxybenzoic acid anion with Mn2+, Co2+, Ni2+, Cu2+ and Zn2+ were obtained as polycrystalline solids with general formula M(C8H6ClO3)2·nH2O and colours typical for M(II) ions (Mn – slightly pink, Co – pink, Ni – slightly green, Cu – turquoise and Zn – white). The results of elemental, thermal and spectral analyses suggest that compounds of Mn(II), Cu(II) and Zn(II) are tetrahydrates whereas those of Co(II) and Ni(II) are pentahydrates. The carboxylate groups in these complexes are monodentate. The hydrates of 4-chloro-2-methoxybenzoates of Mn(II), Co(II), Ni(II), Cu(II) and Zn(II) heated in air to 1273 K are dehydrated in one step in the range of 323–411 K and form anhydrous salts which next in the range of 433–1212 K are decomposed to the following oxides: Mn3O4, CoO, NiO and ZnO. The final products of decomposition of Cu(II) complex are CuO and Cu. The solubility value in water at 293 K for all complexes is in the order of 10–3 mol dm–3. The plots of χM vs. temperature of 4-chloro-2-methoxybenzoates of Mn(II), Co(II), Ni(II) and Cu(II) follow the Curie–Weiss law. The magnetic moment values of Mn2+, Co2+, Ni2+ and Cu2+ ions in these complexes were determined in the range of 76−303 K and they change from: 5.88–6.04 μB for Mn(C8H6ClO3)2·4H2O, 3.96–4.75 μB for Co(C8H6ClO3)2·5H2O, 2.32–3.02 μB for Ni(C8H6ClO3)2·5H2O and 1.77–1.94 μB for Cu(C8H6ClO3)2·4H2O.  相似文献   

10.
杜桂香  郭惠  焦华  刘晶晶  李珺  张逢星  王大奇 《化学学报》2007,65(24):2863-2867
采用“一锅煮”方法, 在金属Ni(II)离子作用下, 以2-乙酰吡啶和1,2-丙二胺物质的量比为2∶1进行反应, 得到了一种新的闭环单Schiff碱N4四齿配体的配合物[C17H20N4Ni(H2O)Cl]2Cl2•(CH3OH). 配合物的晶体结构测定表明, 其配位单元为N桥连的双核配合物, 配位单元间再通过氢键连接成一维链状结构.  相似文献   

11.
N-(2-Hydroxybenzyl)aminopyridines (Li) react with Cu(II) and Pd(II) ions to form complexes in the compositions Cu(Li)2(CH3COO)2 · nH2O (n = 0, 2, 4), Pd(Li)2Cl2 · nC2H5OH (n = 0, 2) and Pd(L2)2Cl2 · 2H2O. In the complexes, the ligands are neutral and monodentate which coordinate through pyridinic nitrogen. Crystal data of the complexes obtained from 2-amino pyridine derivative have pointed such a coordinating route and comparison of the spectral data suggests the validity of similar complexation modes of other analog ligands. Cu(II) complex of N-(2-hydroxybenzyl)-2-aminopyridine (L1), [Cu(L1)2(CH3COO)2] has slightly distorted square planar cis-mononuclear structure which is built by two oxygen atoms of two monodentate carboxylic groups disposed in cis-position and two nitrogen atoms of two pyridine rings. The remaining two oxygen atoms of two carboxylic groups form two Cu and H bridges containing cycles which joint at same four coordinated copper(II) ion. IR and electronic spectral data and the magnetic moments as well as the thermogravimetric analyses also specify on mononuclear octahedric structure of complexes [Cu(L2)2(CH3COO)2 · 2H2O] and [Cu(L3)2(CH3COO)2 · 4H2O] where L2 and L3 are N-(2-hydroxybenzyl)-2- or 3-aminopyridines, respectively.  相似文献   

12.
A [Ni(CN)4]2−-based two-dimensional Mn(II) coordination polymer {Mn(H2O)2[NiCN]4·4H2O}, in which the coordination layers are stacked on top of each other sandwiching 2D water layer of boat-shaped hexagonal water clusters has been synthesized. The complex exhibits high thermal decomposition temperature and reversible water absorption, which were clearly demonstrated by thermal and PXRD studies on the parent and rehydrated complex after dehydration.  相似文献   

13.
The 17O and 14N paramagnetic transverse relaxation time and chemical shift of proline as well as of water, in aqueous solutions of Co(II), Cu(II) and Mn(II) were measured as a function of pH, temperature, and metal ion concentration. The relaxation results were fitted to a theoretical equation linking the Swift-Connick equation to the stability constants of the major complexes in equilibrium. Stability constants for the major complexes of the three ions in this work were determined, along with thermodynamic parameters for some of the complexes. Two complexes of Co(II) were detected directly by 17O NMR at basic pH, and were assigned to CoPrO2 and CoPro3. The hyperfine coupling constant for these two complexes, A/h, was determined directly from the isotropic shift and was found to be −0.63 and −0.31 MHz, respectively. CoPrO2 could be detected in the pH range 6–12, for Co(II) concentrations greater than 0.04 M, and its chemical shift was around 700 ppm downfield from free proline, at 300 K. CoPro3 was detected only at pH 11, in the temperature range 275–284 K, with a chemical shift of 390 ppm downfield from free proline.  相似文献   

14.
Three new metal(II)–cytosine (Cy)/5‐fluorocytosine (5FC) complexes, namely bis(4‐amino‐1,2‐dihydropyrimidin‐2‐one‐κN3)diiodidocadmium(II) or bis(cytosine)diiodidocadmium(II), [CdI2(C4H5N3O)2], ( I ), bis(4‐amino‐1,2‐dihydropyrimidin‐2‐one‐κN3)bis(nitrato‐κ2O,O′)cadmium(II) or bis(cytosine)bis(nitrato)cadmium(II), [Cd(NO3)2(C4H5N3O)2], ( II ), and (6‐amino‐5‐fluoro‐1,2‐dihydropyrimidin‐2‐one‐κN3)aquadibromidozinc(II)–6‐amino‐5‐fluoro‐1,2‐dihydropyrimidin‐2‐one (1/1) or (6‐amino‐5‐fluorocytosine)aquadibromidozinc(II)–4‐amino‐5‐fluorocytosine (1/1), [ZnBr2(C4H5FN3O)(H2O)]·C4H5FN3O, ( III ), have been synthesized and characterized by single‐crystal X‐ray diffraction. In complex ( I ), the CdII ion is coordinated to two iodide ions and the endocyclic N atoms of the two cytosine molecules, leading to a distorted tetrahedral geometry. The structure is isotypic with [CdBr2(C4H5N3O)2] [Muthiah et al. (2001). Acta Cryst. E 57 , m558–m560]. In compound ( II ), each of the two cytosine molecules coordinates to the CdII ion in a bidentate chelating mode via the endocyclic N atom and the O atom. Each of the two nitrate ions also coordinates in a bidentate chelating mode, forming a bicapped distorted octahedral geometry around cadmium. The typical interligand N—H…O hydrogen bond involving two cytosine molecules is also present. In compound ( III ), one zinc‐coordinated 5FC ligand is cocrystallized with another uncoordinated 5FC molecule. The ZnII atom coordinates to the N(1) atom (systematic numbering) of 5FC, displacing the proton to the N(3) position. This N(3)—H tautomer of 5FC mimics N(3)‐protonated cytosine in forming a base pair (via three hydrogen bonds) with 5FC in the lattice, generating two fused R22(8) motifs. The distorted tetrahedral geometry around zinc is completed by two bromide ions and a water molecule. The coordinated and nonccordinated 5FCs are stacked over one another along the a‐axis direction, forming the rungs of a ladder motif, whereas Zn—Br bonds and N—H…Br hydrogen bonds form the rails of the ladder. The coordinated water molecules bridge the two types of 5FC molecules via O—H…O hydrogen bonds. The cytosine molecules are coordinated directly to the metal ion in each of the complexes and are hydrogen bonded to the bromide, iodide or nitrate ions. In compound ( III ), the uncoordinated 5FC molecule pairs with the coordinated 5FC ligand through three hydrogen bonds. The crystal structures are further stabilized by N—H…O, N—H…N, O—H…O, N—H…I and N—H…Br hydrogen bonds, and stacking interactions.  相似文献   

15.
The interaction of diethyl (pyridyn-2-ylmethyl)phosphonate (2-pmpe) with Cu(NO3)2 · 6H2O leads to a partial hydrolysis of the starting ligand and formation of the compound of the formula Cu2(2-mpmpe)2(H2O)2(NO3)2, where 2-mpmpe = monoethyl (pyridyn-2-ylmethyl)phosphonate. The crystal and molecular structure of a copper(II) compound was determined by single X-ray diffraction method. Its structure consists of five-coordinated in distorted square planar geometry (CuNO4 chromophore) copper(II) ions doubly bridged by OPO from phosphonate. The Cu?Cu distance is 4.69 Å. The crystal packing is determined by the interdinuclear hydrogen bond system, which leads to a three-dimensional (3D) H-bonds network. The compound was characterized by infrared, ligand field, EPR spectroscopy, and magnetic studies. The magnetic properties of the title compound investigated over the 1.8–300 K, revealed the occurrence of a weak ferromagnetic coupling through phosphonate bridge (J = 1.86 cm−1) and interdimer superexchange coupling through H-bond network (zJ′ = −0.17 cm−1). Spectroscopic and magnetic properties are presented in the light of crystal structure.  相似文献   

16.
A complex of the composition KNa3[Fe3O(CH3COO)6(H2O)3]3 [α-P2W17Fe(H2O)O61]·32.5H2O (I) was obtained by interaction of FeCl3·6H2O and phosphotungstate K102-P2W17O61]·20H2O in an acetate buffer with a yield of 52%. Compound I was characterized by single crystal X-ray phase analysis and IR spectroscopy. In the crystal structure, the Na and K cations bind [Fe3O(CH3COO)6(H2O)3]+ trinuclear cations and [α-P2W17Fe(H2O)O61]7− heteropolytungstate anions into infinite zigzag chains. Original Russian Text Copyright ? 2005 by N. V. Izarova, M. N. Sokolov, A. V. Virovets, H. G. Platas, and V. P. Fedin __________ Translated from Zhurnal Strukturnoi Khimii, Vol. 46, No. 1, pp. 149–155, January–February, 2005.  相似文献   

17.
Platinum(II) and palladium(II) complexes containing chelating acyl ligands have been synthesized from salicylaldehyde, 2-hydroxynaphthaldehyde and 2-hydroxy-3-methoxybenzaldehyde. The platinum(II) complexes [Pt(acyl)L2], acyl  OC6H4CO, OC10H6CO, O(m-CH3OC6H3CO), L  tertiary phosphine, 1/2 diphenylphosphinoethane, can be isolated with both monodentate and chelating diphosphines, whereas for palladium only the compounds with chelating phosphines are readily obtainable. The reactions of [Pt(OC6H4CO)L2] with HCl afford trans-[PtCl(OHC6H4CO)L2], L  monodentate tertiary phosphine and cis-[PtCl(OHC6H4CO)L2], L2  1,2-bis-diphenylphosphinoethane, in which the metal—carbon bond remains intact. The structure of [Pt(OC6H4CO)-(P(p-CH3C6H4)3)2] has been determined by X-ray diffraction methods and found to have the expected square planar structure. Some relevant bond lengths and angles are: PtP; 2.271(4) and 2.348(5) Å; PtC; 1.96(2) Å and PtO; 2.07(1) Å; PPtP  101°, CPtO  82°.  相似文献   

18.
The title compounds, hexa­aqua­cobalt(II) bis­(hypophosphite), [Co(H2O)6](H2­PO2)2, and hexa­aqua­cobalt(II)/nickel(II) bis(hypophosphite), [Co0.5Ni0.5(H2O)6](H2PO2)2, are shown to adopt the same structure as hexa­aqua­magnesium(II) bis­(hypophosphite). The packing of the Co(Ni) and P atoms is the same as in the structure of CaF2. The CoII(NiII) atoms have a pseudo‐face‐centred cubic cell, with a = b~ 10.3 Å, and the P atoms occupy the tetrahedral cavities. The central metal cation has a slightly distorted octahedral coordination sphere. The geometry of the hypophosphite anion in the structure is very close to ideal, with point symmetry mm2. Each O atom of the hypophosphite anion is hydrogen bonded to three water mol­ecules from different cation complexes, and each H atom of the hypophosphite anion is surrounded by three water mol­ecules from further different cation complexes.  相似文献   

19.
Summary Complexes of the type M(AcLeu)2 · B2 (M = CoII, NiII or ZnII; B = H2O, py, 3-pic, 4-pic; AcLeu =N-acetyl-DL-leucinate ion) and M(AcLeu)2 B (M = CoII or ZnII and B = o-phen) were prepared and investigated by means of magnetic and spectroscopic measurements. The i.r. spectra of all the complexes are consistent with bidentate coordination of the amino acid to the metal ion. The room temperature solid state electronic spectra indicate that the symmetry of this species is closer toD 4h and that MO6 and MO4N2 chromophores are present in the M(AcLeu)2 · 2 H2O and M(AcLeu)2Bn · x H2O (B = py, 3-pic, 4-pic, n=2 and x=0 for M = NiII; B = o-phen, n=1 and x=0 for M = CoII; B = py, 3-pic, 4-pic, n=1 and x=1 for M = CoII) complexes, respectively. By comparing the Dq values of the amino acid and those of other N-substituted amino acids previously studied, a spectrochemical series of the the cobalt(II) and nickel(II) complexes is proposed. The1 H n.m.r. spectra of the zinc(II) complexes confirm the proposed stereochemistry.  相似文献   

20.
Cadmium(II) complexes of 3-hydroxypicolinic acid, namely [CdI(3-OHpic)(3-OHpicH)(H2O)]2 (1), [Cd(3-OHpic)2(H2O)2] (2) and [Cd(3-OHpic)2]n (3) were prepared and characterized by spectroscopic methods (IR, NMR) and their molecular and crystal structures were determined by X-ray crystal structure analysis. Complexes 1 and 2 were prepared in similar reaction conditions using different cadmium(II) salts: cadmium(II) iodide and cadmium(II) acetate dihydrate, respectively, while 3 was prepared by recrystallization of 2 from N,N-dimethylformamide solution. Various coordination modes of 3-OHpicH in 13 were established in the solid state: bidentate N,O-chelated mode in 1 and 2, monodentate mode through the carboxylate O atom from zwitterionic ligand in 1 and bidentate N,O-chelated and bridging mode in 3. In the DMF solution of all prepared complexes, only monodentate mode of 3-OHpicH binding to cadmium(II) through the carboxylate O atom was established by 1H, 13C, 15N and 113Cd NMR spectroscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号