首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The reaction of imidoylzirconocene complexes with zirconocene hydrides yields (N-alkylamido)zirconocene complexes. For a mechanistic study, the specifically substituted imidoylzirconocene complexes 3b–3d have been prepared and treated with the oligomeric metal hydrides (Cp2ZrH2)x (1b) and (Cp2ZrHCl)x (1c). (N-Benzyl formimidoyl)zirconocene chloride (3b) was obtained by treating 1c with benzyl isonitrile 2a. Treatment of dimethylzirconocene with 2a gave (N-benzyl acetimidoyl)methylzirconocene (3c), which was treated with PhICl2 to give (N-benzylacetimidoyl)zirconocene chloride (3d). The reaction of 3d with (Cp2ZrH2)x (1b) yielded (N-benzyl-N-ethylamido)zirconocene chloride (4b) as the only identified product. A 1/1 mixture of 4b and methylzirconocene chloride was obtained upon treatment of 3c with (Cp2ZrHCl)x (1c); in contrast, the reaction of 1c with 3b gave an equimolar mixture of Cp2ZrCl2 and (N-benzyl-N-methylamido)zirconocene chloride (4c). Reaction paths through binuclear (μ-CHR′=NR) zirconocene intermediates are proposed to explain these experimental observations.  相似文献   

2.
The coordinating properties of the trifluoromethyl elemental compounds Me2PP(CF3)2 and Me2AsP(CF3)2 have been studied by the synthesis and spectroscopic investigations (IR, NMR, MS) of their complexes cis-M(CO)4L2 (A), [(CO)4ML]2 (B) and [(CO)5M]2L (C) (M = Cr, Mo, W). Complexes of type A with L = Me2PP(CF3)2 are obtained in good yield by reaction with M(CO)4NBD (NBD = norbornadiene), whereas with L = Me2AsP(CF3)2 the homobinuclear compounds B are formed. The attempt to prepare the cis-M(CO)4[Me2AsP(CF3)2]2 complexes by treating M(CO)4(Me2AsH)2 with P2(CF3)4 is successful only for M = W. Binuclear compounds of type B or C, in general, can be prepared by stepwise reaction of the ligands with either M(CO)4NBD or M(CO)5THF.  相似文献   

3.
Ethylene polymerization was conducted with bis(cyclopentadienyl)zirconium dichloride (1) and rac-dimethylsilylenebis(indenyl)zirconium dichloride (2) combined with trialkylaluminum (AlR3; R=methyl (Me), ethyl (Et), isobutyl (iBu))/triphenylcarbenium tetrakis(pentafluorophenyl)borate (Ph3CB(C6F5)4) or tris(pentafluorophenyl)borane (B(C6F5)3) to study the effect of cocatalysts on polymerization rate (Rp). When AlMe3 was used, no activity or very low activity was observed with both zirconocenes regardless of the borane compounds used. The replacement of AlMe3 to AlEt3 or AliBu3 with 1–AlR3/Ph3CB(C6F5)4 caused polymerization and induction time was observed to reach the maximum Rp. Especially in the case of using AlEt3, it took about 30 min to show the activity. When B(C6F5)3 was used, AlEt3 was not effective but AliBu3 gave the highest activity among all the combinations of AlR3 and the borane compounds. In the case of polymerization with 2 using Ph3CB(C6F5)4, high activity was observed with both AlEt3 and AliBu3 without any induction period. When B(C6F5)3 was used instead of Ph3CB(C6F5)4, very low activity was observed with AlEt3. On the other hand, high activity was observed with AliBu3, and the maximum Rp was found at the beginning of the polymerization. The effect of AlR3 on the formation of active species was discussed based on these results.  相似文献   

4.
Dioxomolybdenum(VI) complex [MoO2(Heg)2] (H2eg = 1,2-ethanediol) reacts with phenolic ligand precursors tris(2-hydroxy-3,5-dimethylbenzyl)amine (H3LMe) and tris(2-hydroxy-3,5-di-tert-butylbenzyl)amine (H3LtBu) to form oxomolybdenum(VI) complexes of type [MoO(LR) (Heg)]. The Heg ligand can be replaced by other alcohols (i.e. 2-aminoethanol, 2-amino-2-methylpropan-1-ol, 2-(dimethylamino)ethanol or allyl alcohol) in the reaction at refluxing toluene or at neat alcohol. Treatment of [MoO(LR)(Heg)] with Me3SiCl yields corresponding chlorido complexes [MoO(LR)Cl]. These are also formed in the reaction of H3LR with [MoO2Cl2(dmf)2]. The reaction of [MoO(LR)Cl] with MeMgI yields air-stable monomethyl derivatives [MoO(LR)(Me)]. X-ray analyses of [MoO(LtBu)X] (X = Heg, 2-methyl-2-aminopropanolate anion or Cl) reveal that the ligand LR has a tetradentate coordination through three oxygen donors and one nitrogen donor, which is located trans to the terminal oxo group. The sixth coordination site is occupied by an oxygen donor, a chlorido ligand or a methyl group.  相似文献   

5.
The compounds [MI2(CO)3(NCMe)2] (M = Mo or W) react with one equivalent of thiourea (tu) in MeOH or N,N,N′,N′-tetramethylthiourea (tmtu) in CH2Cl2 at room temperature to initially afford the monoacetonitrile compounds [MI2(CO)3(NCMe)L] (L = tu or tmtu) which rapidly transform to the isolated iodide bridged dimers, [M(μ-I)I(CO)3L]2 with loss of acetonitrile. Reaction of [WI2(CO)3(NCMe)2] with two equivalents of tu or tmtu gave the expected mononuclear seven-coordinate compounds [WI2(CO)3L2]. However, reaction of [MoI2(CO)3(NCMe)2] with two equivalents of tu or tmtu rapidly affords the iodide-bridged dimers [Mo(μ-I)I(CO)2L2]2 with loss of carbon monoxide from [MoI2(CO)3L2]. The low temperature (−70°C) 13C NMR spectrum of [Mo(μ-I)I(CO)2 {SC(NMe2)2}2]2 suggests the complex is based on two capped octahedra with a carbonyl ligand capping each octahedral face.  相似文献   

6.
M. M. Taqui Khan 《Polyhedron》1983,2(12):1247-1260
Dichlorotetrakis(dimethylsulphoxide)ruthenium(II) reacts with AsPh3 AsMePh2, AsMe2Ph and SbPh3 in ethanolic hydrochloric acid solution to yield the complexes RuCl2(DMSO)2(AsPh3)2, RuCl2(DMSO) L2 (L = AsMePh2, AsMe2Ph, SbPh3) respectively. The treatment of ruthenium(II) blue solution with AsMePh2, AsMe2Ph and SbPh3 in alcohol resulted in the formation of the complexes; RuCl2L3 (L = AsMePh2, AsMe2Ph and SbPh2), respectively. The reaction of RuCl2(DMSO)4 with the bidentate ligands 1,2 bis (diphenylarsino)methane (DPAM), 1,2 bis(diphenylarsino)ethane (DPAE) and 1,2 bis (diphenylphosphino)methane (DPPM). 1,2 bis(diphenylphosphino)ethane (DPPE), in ethanol gave the complexes RuCl2(DPAM)2, RuCl2(DPAE)2, RuCl2 (DPPM)2 RuCl2(DPPE)2, respectively. The complexes thus obtained undergo reaction with carbon monoxide, hydrogen, molecular nitrogen and nitric oxide to yield a variety of mixed ligand complexes.  相似文献   

7.
The species on supported olefin polymerisation catalysts consisting of (n-BuCp)2HfCl2, methylaluminoxane (MAO) and dehydroxylated silica were identified by EXAFS and UV-Vis spectroscopy. Whereas the reaction of (n-BuCp)2HfCl2 with silica leads to a product containing HfO and HfSi non-bonded interactions with concurrent loss of Hf---Cl bonds, the reaction of (n-BuCp)2HfCl2 with silica pretreated with methylaluminoxane yields a mixture of several hafnocene species. The bonding features of (n-BuCp)2HfCl2 and (n-BuCp)2HfCl2/SiO2 are still present to some extent but with new interactions consistent with hafnocene cation formation. The relative proportions of these species depend strongly on the method of the catalyst preparation.  相似文献   

8.
The study of the reactivity of [Pt2M4(CCR)8] (M=Ag or cu; R=Ph or tBu) towards different neutral and anionic ligands is reported. This study reveals that reactions of the phenylacetylide derivatives [Pt2M4(CCPh)8] with anionic, X (X=Cl or Br) or neutral donors (CNtBu or py) in a molar ratio 1:4 (m/donor ratio 1:1) yield the trinuclear anionic (NBu4)2[{Pt(CCPh)4 (MX)2] (M=Ag or Cu, X =Cl or Br) or neutral [{Pt(CCPh04=sAGL)2] (L=CNtBu or py) complexes, respectively. The crystal structure of (NBu4)2[{Pt(CCPh)4}(CuBr)2](4) shows that the anion is formed by a dianionic Pt(CCPh)4 fragment and two neutral CuBr units joined through bridging alkynyl ligands. All the alkynyl groups are σ bonded to Pt and η2-coordinated to a Cu atom which have an approximately trigonal-planar geometry. By contrast, similar reactions with [Pt2M4(CCtBu)8] (molar ratio M/donor 1:1) afford hexanuclear dianionic (NBu4)2[Pt2M4(CCtBu)8X2] or neutral [Pt2Ag4(CCtBu08Py2]. Only by treatment with a large exces of Br (molar ratio M/Br 1:2) are the trinuclear complexes (NBu4)2[{Pt(CCtBu4 (MBr)2] (M=Ag, Cu) obtained. Attempted preparations of analogous complexes with phosphines (L′=PPh3 or PEt3) by reactions of [Pt2M4(CCR8] with L′ leads to displacement of alkynyl ligands from platinum and formation of neutral mononuclear complexes [trans-Pt(CCR)2L′2].  相似文献   

9.
The reaction of [Cp2MoH2] and AgBF4 with the dithio ligands Na(S2CPh) and K(S2COiPr) afforded the complexes [(Cp2MoH2AgS2CPh)2] (1) and [(Cp2MoH2AgS2COiPr)2] (2). Using the monothio ligands Na(SC(O)Ph), K(SC(O)CH3) and Na(S(NHPh)C=C(CN)2) the complexes [(Cp2MoH2AgSC(O)Ph)2] (3), [((Cp2MoH2)2(AgSC(O)CH3)3)n] (4) and [(Cp2MoH2)2AgS(NHPh)C=C(CN)2] (6) were formed. The reaction of thiobenzamide and [(Cp2MoH2)2AgCl] gave the complex [(Cp2MoH2Ag(Cl)S(NH2)CPh)2] (5). Complexes 1 and 2 have a dimeric structure with the two dithio ligands bridging the two silver atoms. Complex 3 is also a dimer, however, the monothio ligands are coordinated with their single sulphur atoms to the silver atoms. In the polymer 4 the thioacetate ligand has the same bonding mode as in 3. The three-dimensional structure of 4 is built-up of parallel strings. In the dimer 5 the thiobenzamide ligands bind with the sulphur atom to a silver atom each. Complex 6 has a monomeric structure in which the silver atom is coordinated to two [Cp2MoH2] ligands and to the sulphur atom of the S(NHPh)C=C(CN)2 ligand. Compounds 1–6 were characterised analytically and spectroscopically and the structures were determined by single crystal X-ray analyses.  相似文献   

10.
张小梅  李淼淼  王琪  江宇  耿延候 《应用化学》2019,36(9):1023-1034
以不同烷基取代的二噻吩并吡咯(DTP)为π桥,连接吲哒省并二噻吩(IDT)中间单元和氰基茚酮(IC)或二氟代氰基茚酮(2F-IC)末端基团,设计并合成了6个窄带隙的非富勒烯受体材料。 其中,IDTDTP-C2C2-H和IDTDTP-C2C2-F中的DTP单元以1-乙基丙基为侧链,IDTDTP-C6C6-H和IDTDTP-C6C6-F中的DTP单元以1-己基庚基为侧链,IDTDTP-C12-H和IDTDTP-C12-F中的DTP单元以十二烷基为侧链。 6个分子均具有较窄的光学带隙(1.37~1.44 eV)。 相比于以IC为末端基团的分子(IDTDTP-C2C2-H、IDTDTP-C6C6-H和IDTDTP-C12-H),由于氟原子的拉电子效应,以2F-IC为末端基团的分子(IDTDTP-C2C2-F、IDTDTP-C6C6-F和IDTDTP-C12-F)具有红移的吸收光谱,以及更低的最高分子占有轨道能级(HOMO)和最低分子空轨道(LUMO)能级。 以宽带隙聚合物聚[2,6-(4,8-双(5-(2-乙基己基))噻吩-2-基)-苯并[1,2-b:4,5-b']二噻吩-alt-5,5-(1',3'-二-2-噻吩)-5',7'-双(2-乙基己基)-苯并[1',2'-c:4',5'-c']二噻吩-4,8-二酮](PBDB-T)为给体材料,制备了有机太阳能电池器件。 PBDB-T:IDTDTP-C6C6-F共混薄膜具有较高且更平衡的空穴/电子迁移率,以及良好的形貌,基于PBDB-T:IDTDTP-C6C6-F的有机太阳能电池获得了6.94%的能量转换效率,开路电压为0.86 V,短路电流密度为13.56 mA/cm2,填充因子为59.5%。  相似文献   

11.
A series of new 2D-layered structural rare-earth coordination polymers with the general formal [Ln(C8H4O5)(H2O)5]·(H2O)·(C8H4O5)1/2 (Ln=Eu for (1); Gd for (2); Tb for (3); Dy for (4); and Er for (5)) have been yielded by hydrothermal synthesis. The coordination polymers crystallize in monoclinic space group C/2c with a=19.838(16), b=10.529(8), c=17.752(14) Å, β=107.503(14)° for (1), with a=19.823(7), b=10.552(4), c=17.762(6) Å, β=107.443(6)° for (2), with a=19.770(4), b=10.519(2), c=17.698(4) Å, β=107.52(3)° for (3), with a=19.632(2), b=10.492(2), c=17.617(3) Å, β=107.470(12)° for (4), with a=19.648(7), b=10.480(3), c=17.598(6) Å, β=107.502(6)° for (5), respectively. And the metal ions (Ln3+) are located in nine-member coordination environment. The carboxyl groups from 5-hydroxyisophthalate chelate the metal ions to form 1D helical cation chains. It is interesting that these helical cation chains are arranged to form 2D anion–cation layers by the uncoordinated ligands' anions as template. And the luminescence properties of the rare-earth ions are studied in the paper.  相似文献   

12.
Treatment of 1,2-trans-C5H8(PCl2)2 with 1,2-C2H4(NHPr-i)2 gave the C2-symmetric perhydro-1,6,2,5-diazaphosphocine C5H8{P(Cl)N(Pr-i)CH2}2-cyclo, which produced dissymmetric C5H8(PPh2){P[N(Pr-i)CH2]2-cyclo} on further reaction with PhMgBr. Cleavage of the P---N bonds with gaseous HCl afforded C5H8(PPh2)(PCl2), which was converted to C5H8(PPh2){P(OPh)2}2 by reaction with phenol. All chiral P,P derivatives were obtained as racemates as well as resolved (1R,2R)- and (1S,2S)-enantiomers.  相似文献   

13.
LnCl3 (Ln=Nd, Gd) reacts with C5H9C5H4Na (or K2C8H8) in THF (C5H9C5H4 = cyclopentylcyclopentadienyl) in the ratio of 1 : to give (C5H9C5H4)LnCl2(THF)n (orC8H8)LnCl2(THF)n], which further reacts with K2C8H8 (or C5H9C5H4Na) in THF to form the litle complexes. If Ln=Nd the complex (C8H8)Nd(C5H9C5H4)(THF)2 (a) was obtained: when Ln=Gd the 1 : 1 complex [(C8H8)Gd(C%H9)(THF)][(C8H8)Gd(C5H9H4)(THF)2] (b) was obtained in crystalline form.

The crystal structure analysis shows that in (C8H8)Ln(C5H9C5H4)(THF)2 (Ln=Nd or Gd), the Cyclopentylcyclopentadieny (η5), cyclooctatetraenyl (η8) and two oxygen atoms from THF are coordinated to Nd3+ (or Gd3+) with coordination number 10.

The centroid of the cyclopentadienyl ring (Cp′) in C5H9C5H4 group, cyclooctatetraenyl centroid (COTL) and two oxygens (THF) form a twisted tetrahedron around Nd3+ (or Gd3+). In (C8H8)Gd(C5H9C5H4)(THF), the cyclopentyl-cyclopentadienyl (η5), cyclooctatetraenyl (η8) and one oxygen atom are coordinated to Gd3+ with the coordination number of 9 and Cp′, COT and oxygen atom form a triangular plane around Gd3+, which is almost in the plane (dev. -0.0144 Å).  相似文献   


14.
Two series of pyrocarbon/fumed silica (CS) samples at different carbon concentrations CC=0.5–64 wt.% (first series, CSI) and 2.6–53 wt.% (second series, CSII) synthesised by means of pyrolysis of CH2Cl2 at fumed silica substrate (SBET=297 (CSI) and 232 (CSII) m2 g−1) under slightly different conditions were studied by using TEM, FTIR-PAS, DTG, and nitrogen adsorption–desorption methods. On methylene chloride carbonisation, disordered carbon deposits can form mainly in the inter-particle volume of secondary particles (aggregates of primary particles and agglomerates of aggregates) covering the surfaces of primary silica particles; therefore, marked reduction of the pore (gaps between primary particles) volume and the specific surface area is observed with increasing CC. Estimation of distributions of the pore fSCD(Rp) and particle f(a) sizes using a self-consistent method with binary regularisation with respect to both fSCD(Rp) and f(a) shows that the average size of particles increases (silica particles are covered by pyrocarbon) and individual pyrocarbon particles (up to 50 nm according to TEM) also appear. Structural parameters of carbosils are characterised by nonlinear changes with increasing carbonisation time. Surface functionalities on CS samples correspond to aromatic and twinned CC bonds with contribution of oxygen-containing groups.  相似文献   

15.
Toluene solutions of M2(NMe2)6 (M = Mo, W) react with mesitylene selenol (Ar′SeH) to give M2(SeAr′) 6 complexes. MO2(OR)6 (R = tBu, CH2tBu) react with excess> 6 fold) Ar′SeH to give Mo2 (SeAr′)6, whilst W2(OR)6(py)2 (R = iPr, CH2tBu) react with excess (> 6 fold) Ar′SeH to give W2(OR)2(SeAr′)4. Reaction of MO2(OPri)6 with Ar′SeH produces Mo2(OPri)2 (SeAr′)4 which crystallizes in two different space groups. These areneselenato complexes are air-stable and insoluble in common organic solvents. X-ray crystallographic studies revealed that the Mo2(SeAr′)6 and W2(SeAr′)6 compounds are isostructural in the solid state and adopt ethane-like staggered configurations with the following important structural parameters, M---M (W---W/Mo---Mo) 2.3000(11)/2.2175(13) Å, M---Se 2.430 (av.)/2.440 (av.) Å, M---M---SE 97.0° (av.)°. In the solid state W2(OiPr)2(SeAr′)4 adopts the anti-configuration with crystallographically imposed Ci symmetry and W---W 2.3077(7) Å, W---Se 2.435 (av.) Å, W---O 1.858(6) Å; W---W---SE 100.27(3)°, 93.8(3)° and W---W---O 108.41(17)°. Mo2(OPri)2(SeAr′) 4 crystallizes in both P and A2/a space groups in which the molecules are isostructural with each other and the tungsten analogue. Important bond lengths and angles are Mo---Mo 2.180(24) Å, Mo---Se 2.432(av.) Å, Mo---O 1.872(9) Å, Mo---Mo---Se 99.39(9)°, 94.71(8)°, Mo---Mo---O 107.55(28)°.  相似文献   

16.
Diethylzinc reacts with hydroperchlorates of N-alkylated 1,3,5-triazacyclohexanes (R3TAC; R = methyl (Me), benzyl (Bz), isopropyl (iPr)) and with the hydrotetrafluoroborate of 1,3,5-tris-(para-fluorobenzyl)-1,3,5-triazacyclohexane (FBz3TAC) to give the corresponding cationic zinc ethyl complexes [(R3TAC)Zn(Et)][X] (X = ClO4, BF4). Similar complexes were obtained from diethylzinc treated with [HNMe2Ph][BF4] or [HNMe2Ph][B(C6F5)4](Et2O) in the presence of R3TAC (R = Bz, FBz, s-1-phenylethyl (s-PhMeCH)). A product of decomposition of [(Bz3TAC)Zn(Et)][ClO4] was analyzed by X-ray diffraction. The structures of [({s-PhMeCH}3TAC)Zn(Et)][BF4] an [(FBz3TAC)Zn(Et)][BF4] were estimated using nuclear Overhauser enhancement spectroscopy. Protonolysis of diethylzinc with [HNMe2Ph][BF4] in the presence of 13-benzyl-1,5,9-triazatricyclo[7.3.1.05,13]-tridecane (BzTATC) yielded the complex [(BzTATC)Zn(Et)][BF4].  相似文献   

17.
Bis(2-N,N-dimethylamino-indenyl) zirconium dichloride, (2-(CH3)2N-C9H6)2ZrCl2, and dimethylsilyl-bridged bis(2-N,N-dimethylamino-indenyl) zirconium dichloride, (CH3)2Si(2-(CH3)2N-C9H5)2ZrCl2, were prepared by reaction of the corresponding ligand lithium salts with ZrCl4 in toluene. Diffractometric structure determinations reveal C2-symmetric complex geometries for both complexes. An increased electron density at the Zr center of the dimethylamino-substituted complexes is indicated by reduction potentials which are 0.3–0.4 V more negative than those of their unsubstituted analogs. When activated with methyl aluminoxane in toluene solution, (CH3)2Si(2-(CH3)2N-C9H5)2ZrCl2 catalyzes the polymerization of propene to polymers with a microstructure comparable with that of polymers produced with other Me2Si-bridged bis(indenyl)ZrCl2 complexes, but with a substantially increased fraction of i-propyl end groups derived from alkyl exchange between Zr-polymer and Al---Me species.  相似文献   

18.
Treatment of Mn(CO)5SiTolp2H (2) with an excess of LiAlH4, NaBH4, or NaBH3(CN) in THF at room temperature gave hydrosilane H---SiTolp2H in high yield together with Mn2(CO)10. No reduction of CO ligands was observed. On the other hand, treatment of 2 with an excess of Red-Al (=Na[(CH3OCH2CH2O)2AlH2]) in toluene and subsequent addition of aqueous acidic solution afforded alkylsilanols (CH3)SiTolp2(OH) and (C2H5)SiTolp2(OH). Treatment of the reaction mixture of 2 and Red-Al with LiAlH4 in diethyl ether instead of hydrolysis gave alkylhydrosilanes (CH3)SiTolp2H and (C2H5)SiTolp2H. The methyl and ethyl groups on silicon originate from the CO ligands in 2. These products clearly demonstrate that not only the Si---C coupling, but also C---C coupling occurs efficiently in this reaction.  相似文献   

19.
In situ reaction of Li[closo-1-Ph-1,2-C2B10H10] with 7-azabicyclo [4.1.0] heptane results in the formation of the disubstituted carborane, closo-1-Ph-2-(2′-aminocyclohexyl)-1,2-C2B10H10 (1), in 63% yield. Decapitation of (1) with potassium hydroxide in refluxing ethanol produces the cage-opened nido-carborane, K[nido-7-Ph-8-(2′-aminocyclohexyl)-7,8-C2B9H10] (2), in 80% yield. Deprotonation of the above monoanion with two equivalents of n-butyllithium followed by reaction with anhydrous MCl4 · 2THF (M = Zr, Ti) provides d0-half-sandwich metallocarboranes, closo-1-M(Cl)-2-Ph-3-(2′-σ-(H)N-cyclohexyl)-2,3-η5-C2B9H9 (3 M = Zr; 4 M = Ti) in 53% and 42% yields, respectively. The reaction of Li[closo-1,2-C2B10H11] with 7-azabicyclo [4.1.0] heptane in THF affords closo-1-(2′-aminocyclohexyl)-1,2-C2B10H10 (5) in 59% yield. Immobilization of the carboranyl amino ligand (1) to an organic support, Merrifield’s peptide resin (1%), has been achieved by the reaction of the sodium salt of (5) with polystyryl chloride in THF to produce closo-1-(2′-aminocyclohexyl)-2-polystyryl-1,2-C2B10H10 (6) in 87% yield. Further reaction of the dianion derived from (6) with anhydrous ZrCl4 · 2THF led to the formation of the organic polystyryl supported d0-half-sandwich metallocarborane, closo-1-Zr(Cl)-2-(2′-σ-(H)N-cyclohexyl)-3-polystyryl-2,3-η5-C2B9H9 (7), in 38% yield. These new compounds have been characterized by elemental analyses, NMR, and IR spectra. Polymerizations of both ethylene and vinyl chloride with (3) and (7) have been performed in toluene using MMAO-7 (13% ISOPAR-E) as the co-catalyst. Molecular weights up to 32.8 × 103 (Mw/Mn = 1.8) and 9.5 × 103 (Mw/Mn = 2.1) were obtained for PE and PVC, respectively.  相似文献   

20.
Treatment of the dimer complex [C5Me5 (CO)2 Ru]2 (1) with HBF4 in CH2Cl2 at room temperature yields the hydrido-bridged dinuclear complex [(C5Me5)2Ru2(CO)4H]BF4 (2), and after refluxing in propionic anhydride [C5Me5(CO)3Ru]BF4 (5) is obtained, UV-irradiation of 1 in the presence of H2CHal2 (Hal = Cl, I) or trimethylphosphine leads to the formation of C5Me5(CO)2Ru-Hal (3a, 3b) or C5Me5(CO)(Me3P)RuH (4) respectively. Exchange reactions of 3a, 3b with LiAlH4, NaOMe and Me3 P give the complexes C5Me5(CO)2RuX (6a,6b) (X=H, OMe), C5Me5(CO)(Me3P)Ru-Hal (7a,7b) (Hal = Cl, I) and C5Me5(Me3P)2RuI (8). The interaction of 3b or 5 with Me3P=CH2 leads to the formation of the ylide complex [C5Me5(CO)(Me3P)-RuCH2PMe3)Cl (9) or the rutheniumacyl-ylide C5Me5(CO)2RuC(O)CH=PMe3 (10). 4 reacts with Me3P=CH2 to give C5Me5(CO)(Me3P)RuMe (11) and Me3P via the intermediate formation of the phosphonium salt Me4P[Ru(CO) (Me3P)-C5Me5].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号