首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ferrimagnetic resonance spectra of the [Mn{(R/S)-pn}]2[Mn{(R/S)-pn}]2(H2O)][Cr(CN)6]2 molecular magnetics were examined. It was established that, within the high-temperature (paramagnetic) region (T > 53 K), the EPR spectrum features a single Lorentz-shaped peak, while, at temperatures below 53 K, in a three-dimensional ferrimagnetic state, this peak splits into several components, some of which correspond to different states of spins in the helical chains of atoms comprising the chiral crystalline structure.  相似文献   

2.
The temperature dependence of the magnetization reversal dynamics of the chiral molecular ferrimagnet [Mn{(R/S)-pn}]2[Mn{(R/S)-pn}2(H2O)][Cr(CN)6]2 has been studied at low frequencies of 1–1400 Hz, which are characteristic of the domain wall motion. It has been found from the Cole-Cole plots that domain walls undergo relaxation (at temperatures T > 10 K) and creep (at T < 10 K), and the main parameters determining these modes and the transition between them have been determined. It has been shown that the quantitative regularities of the transition between the modes of the domain wall motion correspond to the concepts of the competition between the contributions of two mechanisms to the domain wall retardation (the periodic Peierls relief and random structural defects).  相似文献   

3.
Quasiperiodic sequences of the maxima of microwave absorption with decreasing amplitudes have been observed in a temperature range of 4–50 K in the electron spin resonance spectra of ferrimagnetic chiral single crystals [Mn{(R/S)-pn}]2[Mn{(R/S)-pn}2(H2O)][Cr(CN)6]2, as well as [Cr(CN)6][Mn(S)-pnH-(H2O)]H2O. Theoretical estimates and previous experimental data indicate that the Dzyaloshinskii-Moriya interaction is the main factor determining the chirality of the spin density and the existence of soliton solutions for the spin dynamics in these crystals. The experimental dependences obtained for the distances between the microwave power absorption maxima on the constant component of the magnetic field of the spectrometer correspond to the theoretical predictions for spin solitons in three-dimensional magnetic materials and exhibit another behavior in crystals with quasi-two-dimensional magnetic ordering.  相似文献   

4.
The nonlinear absorption properties of two organometallic compounds, [(C2H5)4N]2[Cu(C3S5)2] (DCu1) and [(C4H9)4N]2[Cu(C3S5)2] (DCu2), have been investigated using an open-aperture Z-scan technique at 1064 nm with 40 ps pulse width and at 1053 nm with 18 ns pulse width. The reverse saturable absorption (RSA) which was observed in both samples with nanosecond pulse excitation was much larger than that observed with picosecond pulse excitation. The nonlinear absorption properties were analyzed theoretically by a five-level model. Optical limiting based on RSA was performed and limiting thresholds were evaluated for both samples under three conditions. DCu1 exhibited the better limiting characteristics because of its stronger RSA response.  相似文献   

5.
A sequence of maxima of microwave absorption has been found in the ferromagnetic resonance (FMR) spectra of the chiral molecular ferrimagnet [Mn{(R/S)-pn}]2[Mn{(R/S)-pn}2(H2O)][Cr(CN)6]2, which, as is shown, corresponds to the spin-soliton resonance. It has been established that this sequence corresponds to an incommensurate magnetic structure induced by the competition between the symmetric and antisymmetric exchange interactions. On the basis of the FMR spectra and their dependence on the temperature, the parameters of the modulated magnetic structure have been estimated.  相似文献   

6.
The 1D organic salt TTF[Ni(dmit)2]2 becomes superconductor with Tc=1.6 K under an applied hydrostatic pressure of 7 kbar. Structural determinations in this system lead us to suspect that superconductivity (SC) coexists with a charge density wave (CDW) instability at low pressure. In order to better understand how SC emerge from a CDW and to revisit the pressure–temperature phase diagram of the TTF[Ni(dmit)2]2 we performed transport and thermoelectric power measurements under pressure.  相似文献   

7.
The effect of IIIA metal and transition metalT substitution for Fe on crystal structure, magnetostriction and spontaneous magnetostriction, anisotropy and spin reorientation of a series of polycrystalline Tb0.3 Dy0.7 (Fe0.9 T 0.1)1.95 (T=Mn, Fe, Co, B, Al, Ga) alloys at room temperature were investigated systematically. It was found that the primary phase of the Tb0.3 Dy0.7 (Fe0.9 T 0.1)1.95 alloys is the MgCu2-type cubic Laves phase structure for different substitution. The magnetostriction λ{ins} decrases greatly for the substitution of IIIA metal, B, Al and Ga, but is saturated more easily for Al and Ga substitution, showing that the Al and Ga substitution is beneficial to a decrease in the magnetocrystalline anisotropy of Tb0.3 Dy0.7 (Fe0.9 T 0.1)1.95 alloys. However, the substitution of transition metal Mn and Co decreases slightly the magnetostriction λ{ins}. It was also found that the effect of different substitutions on the spontaneous magnetostriction λ{in111} is distinct. The analysis of the M?ssbauer spectra indicates that the easy magnetization direction in the {110} plane deviates slightly from the main axis of symmetry for Al and Ga substitution, namely spin reorientation, but it does not change evidently for B, Mn and Co substitution.  相似文献   

8.
The strong vibronic one-phonon side-bands of the 5D07F0 emission of Eu3+ in {(C4H9)4N}3 EuxY1?x(NCS)6 are used to compute the Huang-Rhys electron-phonon coupling factor (S0) of Eu3+ with the mode at 35 cm-1. Increasing concentration from 1 to 100 is found to lead to a doubling of the electron-phonon coupling strength. Generalization of such an effect is proposed as a new hypothesis for part of the self-quenching process of rare-earth ions.  相似文献   

9.
The complex dielectric permittivity ?(ω) of [N(CH3)4]2CoCl4 and [N(CH3)4]2ZnCl4 along the a-axis was measured between 0.35 MHz and 100 MHz. It has been found that for both substances the relaxation frequencies are about 5 MHz at Tc. The dielectric relaxation of both substances could be described by a polydispersive process β = 0.74 in the vicinity of Tc. However, for the temperature region of (T?Tc) > 0.6 for [N(CH3)4]2CoCl4 the dielectric absorption seems to be rather monodispersive.  相似文献   

10.
A novel inorganic solid electrolyte with a layered framework structure stable up to 1043 K, Na14.5[Al(PO4)2F2]2.5[Ti(PO4)2F2]0.5 (NATP), has been hydrothermally prepared and characterized by single-crystal and powder X-ray diffraction techniques, X-ray fluorescence (XRF) analysis, IR spectroscopic measurement, thermogravimetric and differential thermal analysis (TGA and DTA). NATP crystallizes in the acentric hexagonal space group P3 with a=10.448(2), b=10.448(2), , Z=1, containing a large number of Na+ cations in the interlamellar space and the cavities of its framework. There are six different crystallographic Na+ cationic sites, in which 8% Na(5) and 12% Na(6) sites are vacant. Electrical conductivity measurements show that Na+ cations exhibit a high mobility with two domains for the electrical conductivity versus temperature.  相似文献   

11.
The third-order optical nonlinearities of an organo-metallic compound, [(CH3)4N]2[Cu(dmit)2] (dmit2−=4,5-dithiolate-1,3-dithiole-2-thione), abbreviated as MeCu, dissolved in acetone are characterized by Z-scan technique with picosecond and nanosecond laser pulses in the near-infrared region. Two-photon absorption has been found when the sample solution is irradiated by 40 ps pulse width at 1064 nm and the two-photon absorption (TPA) coefficient βTPA is 4×10−13 m/W. While excited by 15 ns laser pulses at 1053 nm, the Z-scan spectra reveal strong reverse saturable absorption (RSA) and the nonlinear absorption coefficient βRSA is estimated to be as high as 7.07×10−11 m/W which is much larger than βTPA. An explanation for this enhancement is given. All the results suggest that MeCu may be a promising candidate for the application to optical limiting in the near-infrared region.  相似文献   

12.
We report a novel method of growing red luminescent (635 nm) Mn-doped CdS (CdS:Mn) nanoparticles capped by an inorganic shell of Mn(OH)2. CdSO4, Na2S2O3 and Mn(NO3)2 were used as the precursors, and thioglycerol (C3H8O2S) was employed as the capping agent and also the catalyst of the reaction. Using these materials resulted in very slow rate of the reaction and particles growth. The self-assembled one-pot process was performed at pH of 8 and Mn:Cd ratio of 10, and took about 10 days for completion. CdS:Mn nanoparticles are slowly formed in the first day of the process; however, the luminescence is weak. After 7 days, the solution turns white turbid through the formation of additional particles, which precipitate on the walls on the next day. At this stage, a relatively strong red luminescence at 635 nm appears from transparent solution of the CdS:Mn nanoparticles. The white deposit on the walls turns to dark-brown color and luminescence increases on the 9th day. Finally, the CdS:Mn nanoparticles agglomerate and precipitate out of the solution on 10th day. X-ray diffraction and optical spectroscopy showed crystalline phase CdS nanoparticles with an average size of 3.6 nm. We explain the luminescence enhancement based on the formation of a Mn(OH)2 shell on the surface of the CdS:Mn nanoparticles during the precipitation stage. This can passivate the S dangling bonds located on the particles surface. As the surface Cd sites are previously capped with thioglycerol molecules, a complete surface passivation is achieved and results in emergence of high-intensity luminescence.  相似文献   

13.
Layered single crystals of the (BEDO-TTF)6[M(CN)6](H3O,CH3CN)2 (M = Fe, Cr) compounds with alternating conducting layers of BEDO-TTF and [M(CN)6](H3O,CH3CN)2 are studied. The contributions to the magnetic susceptibility from charge carriers in BEDO-TTF layers and from the subsystem of localized magnetic moments of iron (or chromium) transition metal complexes are separated for both compounds under investigation. It is revealed that the crystals with [Fe(CN))6]3− anions at a temperature of ∼80 K and the crystals with [Cr(CN))6]3− anions at ∼30 K undergo magnetic transitions which are accompanied by drastic changes in the parameters of the EPR lines associated with the BEDO-TTF layers and the subsystem of localized spins of transition metal complexes. It is established that the presence of the BEDO-TTF layers in the structure affects the magnetic properties of iron and chromium hexacyanide complexes. Original Russian Text ? R.B. Morgunov, E.V. Kurganova, T.G. Prokhorova, E.B. Yagubskiĭ, S.V. Simonov, R.P. Shibaeva, 2008, published in Fizika Tverdogo Tela, 2008, Vol. 50, No. 4, pp. 657–663.  相似文献   

14.
Recently, we have discovered a new type of first order phase transition around 120 K for (n-C3H7)4N[FeIIFeIII(dto)3] (dto=C2O2S2), where the charge transfer transition between FeII and FeIII occurs reversibly. In order to elucidate the origin of this peculiar first order phase transition. Detailed information about the crystal structure is indispensable. We have synthesized the single crystal of (n-C3H7)4N[CoIIFeIII(dto)3] whose crystal structure is isomorphous to that of (n-C3H7)4N[FeIIFeIII(dto)3], and determined its detailed crystal structure. Crystal data: space group P63, a=b=10.044(2) Å, c=15.960(6) Å, α=β=90°, γ=120°, Z=2 (C18H28NS6O6FeCo). In this complex, we found a ferromagnetic transition at Tc=3.5 K. Moreover, on the basis of the crystal data of (n-C3H7)4N[CoIIFeIII(dto)3], we determined the crystal structure of (n-C3H7)4N[FeIIFeIII(dto)3] by simulation of powder X-ray diffraction results.  相似文献   

15.
In this article we apply a model, based on the combined effect of a polarizable chemical environment (the Pseudo-Multipolar Field) and the mixing between J-levels, to study the 5D07F0 intensity of the Eu3+ ion in the {(C4H9)4N}3Y(NCS)6 host. Good agreement is found between theory and experiment. The results are discussed.  相似文献   

16.
Single crystals [N(CH3)4]2MnCl4 and [N(CH3)4]2CoCl4 were grown by the slow evaporation technique from the super-saturated solutions. The samples obtained were undergone the X-ray and spectroscopic studies. Absorption spectra in the paraelectric phase at T=303 K have been recorded using the Shimadzu 160A double beam automatic scanning spectrophotometers. On the basis of the exchange charge model and Racah theory the crystal field parameters and Racah parameters have been calculated; all absorption bands for both crystals were given an assignment.  相似文献   

17.
The temperature dependences of 2H NMR spectra and spin-lattice relaxation time T1 have been measured for paramagnetic [Mn(H2O)6][SiF6]. The obtained 2H NMR spectra were simulated by considering the quadrupole interaction and paramagnetic shift. The variation of the spectra measured in phase III was explained by the 180° flip of water molecules. The activation energy Ea and the jumping rate at infinite temperature k0 for the 180° flip of H2O were obtained as 35 kJ mol−1 and 4×1014 s−1, respectively. The spectral change in phases I and II was ascribed to the reorientation of [Mn(H2O)6]2+ around the C3 axis where the Ea and k0 values were estimated as 45 kJ mol−1 and 1×1013 s−1, respectively. From the almost temperature independent and short T1 value, the correlation time for electron-spin flip-flops, τe, and the exchange coupling constant J were obtained as 3.0×10−10 s and 2.9×10−3 cm−1, respectively. The II-III phase transition can be caused by the onset of the jumping motion of [Mn(H2O)6]2+ around the C3 axis.  相似文献   

18.
We have determined the thermoelectric power ? of the high ionic conductivity glass (AgI)0.79(Ag2O.B2O3)0.21; ? is negative throughout the investigated T range, 320–500 K. The heat of transport of the mobile Ag+, QAg, taken as the slope of the straight line fitting ? versus 1/T, is quite lower than the activation energy obtained from conductivity data, viz. QAg = 2.81 kcal/mole-1 < Eact = 4.34 kcalmole-1. To circumvent this discrepancy, the analysis of the experimental data is carried out as follows: (i) it is supposed that QAg = Eact in agreement with the free ion theory for solid electrolytes; (ii) the vibrational part of the silver ion entropy, S(Ag+, vib), is assumed to be equal to the entropy of silver, S(Ag); (iii) on the ground of a structural model for this kind of glasses, the ideal configurational entropy of the mobile Ag+, S(Ag+, conf)id, is evaluated through a statistical approach. The ideal ionic entropy is defined as S(Ag+)id = {S(Ag+, vib) + S(Ag+, conf)id}; (iv) the difference {S(Ag+)exp - S(Ag+)id} is viewed as an excess entropy and is described according to the classical model of the regular solutions.  相似文献   

19.
Nanocomposite electrodes of recently identified polyanion cathode materials comprising Li x M2(MoO4)3 {0 ≤ x < 3} [M = Co, Ni] and nanosized carbon having ~10 nm particle size were found to show remarkable improvement in their discharge capacity compared to the one prepared with acetylene black. The addition of nanosized carbon as a conductive additive offered improved initial discharge capacity of 121 mAh/g between 3.5–2.0 V vs Li/Li. The cause for such an increase could be firmly attributed to the filling up of the grain–grain contact area of the active material, facilitating the intimate grain–grain contacts in the composite structure leading to enhanced capacity delivery. As for the nanocomposite Li x Co2(MoO4)3, it was found that at least 55% of its first discharge capacity was retained at the end of 20th cycle compared to its analogous counterpart, Li x Ni2(MoO4)3. Paper presented at the Third International Conference on Ionic Devices (ICID 2006), Chennai, Tamilnadu, India, Dec. 7–9, 2006.  相似文献   

20.
Using a Fourier transform spectrometer, we have recorded the spectra of ozone in the region of 4600 cm−1, with a resolution of 0.008 cm−1. The strongest absorption in this region is due to the ν1+ ν2+ 3ν3band which is in Coriolis interaction with the ν2+ 4ν3band. We have been able to assign more than 1700 transitions for these two bands. To correctly reproduce the calculation of energy levels, it has been necessary to introduce the (320) state which strongly perturbs the (113) and (014) states through Coriolis- and Fermi-type resonances. Seventy transitions of the 3ν1+ 2ν2band have also been observed. The final fit on 926 energy levels withJmax= 50 andKmax= 16 gives rms = 3.1 × 10−3cm−1and provides a satisfactory agreement of calculated and observed upper levels for most of the transitions. The following values for band centers are derived: ν01+ ν2+ 3ν3) = 4658.950 cm−1, ν0(3ν1+ 2ν2) = 4643.821 cm−1, and ν02+ 4ν3) = 4632.888 cm−1. Line intensities have been measured and fitted, leading to the determination of transition moment parameters for the two bands ν1+ ν2+ 3ν3and ν2+ 4ν3. Using these parameters we have obtained the following estimations for the integrated band intensities,SV1+ ν2+ 3ν3) = 8.84 × 10−22,SV2+ 4ν3) = 1.70 × 10−22, andSV(3ν1+ 2ν2) = 0.49 × 10−22cm−1/molecule cm−2at 296 K, which correspond to a cutoff of 10−26cm−1/molecule cm−2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号