首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We present an effective scheme to teleport an unknown ionic entangled internal state via trapped ions without joint Bell-state measurement. In the constructed quantum channel process, we adopt entanglement swapping to avoid decrease of entanglement during the distribution of particles. Thus our scheme provides new prospects for quantum teleportation over longer distance. The distinct advantages of our scheme are that our scheme is insensitive to heating of vibrational mode and can be generalized to teleport an N-ion electronic entangled GHZ class state. Furthermore, in our scheme the success probability can reach 1.  相似文献   

2.
We propose a fast scheme to generate the quantum-interference states of N trapped ions. In the scheme the ions are driven by a standing-wave laser beam whose carrier frequency is tuned such that the ion transition can take place. We also propose a simple and fast scheme to produce the GHZ state of N hot trapped ions and this scheme is insensitive to the heating of vibrational motion, which is important from the viewpoint of decoherence.  相似文献   

3.
We propose an efficient scheme to generate multiqubit Greenberger-Horne-Zeilinger (GHZ) states by one-step quantum operation in a driven circuit quantum electrodynamics (QED) system. Our proposal is based on a unitary evolution exp[-iλSx2], with Sx being the collective spin operator in x direction andλ a controllable parameter, induced by driving the resonator. The quantum operation avoids resonator-field decay and may achieve the GHZ states with ideal success probability. The feasibility with the experimentally-demonstrated circuit QED system is also discussed.  相似文献   

4.
We propose a scheme to generate the Greenberger-Horne-Zeilinger (GHZ) states and the cluster states of many trapped ions. In the scheme, the ion is illuminated by a single laser tuned to the first lower vibrational sideband. The scheme only requires resonant interactions. Thus the scheme is very simple and the quantum dynamics operation can be realized at a high speed, which is important in view of decoherence.  相似文献   

5.
A scheme is proposed to simulate the Ising model and preserve the maximum entangled states (Bell states) in cavity quantum electrodynamics (QED) driven by a classical field with large detuning. In the strong driving and large-detuning regime, the effective Hamiltonian of the system is the same as the standard Ising model, and the scheme can also make the initial four Bell states of two atoms at the maximum entanglement all the time. So it is a simple memory for the maximal entangled states. The system is insensitive to the cavity decay and the thermal field and more immune to decoherence. These advantages can warrant the experimental feasibility of the current scheme. Furthermore, the genuine four-atom entanglement may be acquired via two Bell states through one-step implementation on four two-level atoms in the strong-driven model, and when two Greenberger-Horne-Zeilinger (GHZ) states are prepared in our scheme, the entangled cluster state may be acquired easily. The success probability for the scheme is 1. Supported by the National Natural Science Foundation of China (Grant No. 10774088) and the Key Program of the National Natural Science Foundation of China (Grant No. 10534030)  相似文献   

6.
为了避免激光相位的起伏对几何相位逻辑门保真度的影响, 提出一种基于囚禁离子的量子几何相位逻辑门的新方案。该机制是利用一束频率调制的行波激光场作用于两个囚禁离子上实现的。它的优点有:操作简单,仅需一步就能实现。不灵敏于激光场的相位也不需要对囚禁离子进行个别寻址。  相似文献   

7.
Recently, Huang and Zhao (Int. J. Theor. Phys. 56, 678, 2017) proposed a new scheme for controlled remote state preparation of an arbitrary two-qubit state by using two sets of three-qubit GHZ states as the quantum channel. In the scheme, Alice and Bob choose four different kinds of two-qubit projective measurement bases to measure their local qubits, respectively. We demonstrate that two sets of four-qubit GHZ states can be used to realize the deterministic controlled remote state preparation of an arbitrary two-qubit state by performing only two-qubit projective measurements.  相似文献   

8.
We propose a scheme to deterministically realize N-qubit GHZ state measurement and discrimination. The scheme is simple and efficient in the senses that only controlled-not operations and single-qubit measurement are needed.  相似文献   

9.
In this paper, by constructing some useful measurement bases, we first show that two senders can jointly prepare a three-qubit state of complex coefficients to a remote receiver via the shared three GHZ states. Then, the success probability can be improved by using the permutation group to classify the preparation state. Furthermore, under some different measurement bases, we propose another scheme to jointly prepare a three-qubit state of real coefficients with less restrictions. Finally, the present schemes are extended to multi-sender, and the classical communication costs of all the schemes are also calculated.  相似文献   

10.
We propose a scheme for teleportation of an unknown two-qubit entangled state via trapped ions. In this scheme, we use the GHZ state as a quantum channel and the success probability can reach 1. The distinct advantage of our scheme is insensitive to the heating of the vibrational mode. In addition, Bell-state measurement is not required.  相似文献   

11.
王俊  余龙宝  叶柳 《中国物理》2007,16(8):2211-2214
This paper proposes a simple scheme for generating a three-atom GHZ state via cavity quantum electrodynamics (QED). The task can be achieved through the interaction between two EPR states, which can be prepared easily with current technology. In this scheme, the cavity field is only virtually excited during the interaction process, and no quantum information transfer between the atoms and the cavity is required. Thus it greatly prolongs the efficient decoherent time. Moreover, this scheme is also applicable for generating an N-atom GHZ state.  相似文献   

12.
This paper presents an alternative scheme to realize the storage of entangled states for multiple trapped ions including W state, Bell states, and GHZ states even with ions which exchange vibrational energy with a heating surrounding. Our scheme requires that the ions be simultaneously excited by two laser beams with different frequencies.In this scheme the vibrational degrees of freedom are only regarded as intermediate states and the ions exchange energy via the mediation of the vibration of the vibrational mode in coupling processes. The scheme is insensitive to both the initial vibrational state and heating if the system remains in the Lamb-Dicke regime. Since the effective Rabi frequency has a small dependence on the vibrational quantum number the heating will have no direct effect on the internal state evolution.  相似文献   

13.
We present a scheme to entangle fields in multiple cavities. Our scheme is based on the resonant interaction of a Ξ-type three-level atom with the cavity fields for precalculated interaction time, which enables us to generate a quantum entangled Greenberger-Horn-Zeilinger (GHZ) state of fields in multiple cavities. In principle, the scheme can be also generalized to generate N-party GHZ state. The required experimental techniques are within the scope of what can be obtained in the microwave cavity QED set up.  相似文献   

14.
Based on Coulomb blockade, we propose a scheme to generate two types of three-qubit entanglement, known as Greenberg-Horne-Zeilinger (GHZ) state and W state, in a macroscopic quantum system. The qubit is encoded in the charge qubit in the superconducting system, and the scheme can be generalized to generate the GHZ state and W state in multi-partite charge qubits. The GHZ state and W state are the eigenstates of the respective idle Hamiltonian, so they have the long lifetime.  相似文献   

15.
We propose an efficient scheme for realizing quantum dense coding with three-particle GHZ state in separated low-Q cavities. In this paper, the GHZ state is first prepared with three atoms trapped, respectively, in three spatial separated cavities. Meanwhile, with the assistance of a coherent optical pulse and X-quadrature homodyne measurement, we can implement quantum dense coding with three-particle GHZ state with a higher probability. Our scheme can also be generalized to realize N-particle quantum dense coding.  相似文献   

16.
SONG Wei 《理论物理通讯》2007,48(6):1025-1028
We present two schemes for concentrating unknown nonmaximally entangled Greenberger-Horme-Zeilinger (GHZ) or W class states. The first scheme for concentrating the nonmaximally entangled GHZ state is based on linear optical devices. The second scheme for concentrating the W class states can be applied to a wide variety of atomic state. Both of our schemes are not postselection ones and are within the current technologies.  相似文献   

17.
杨贞标 《中国物理》2007,16(2):329-334
An alternative scheme is presented for teleportation of a two-atom entangled state in cavity quantum electrodynamics (QED). It is based on the resonant atom--cavity field interaction. In the scheme, only one cavity is involved, and the number of the atoms needed to be detected is decreased compared with the previous scheme. Since the resonant atom--cavity field interaction greatly reduces the interaction time, the decoherence effect can be effectively suppressed during the teleportation process. The experimental feasibility of the scheme is discussed. The scheme can easily be generalized to the teleportation of N-atom Greeninger--Horne--Zeilinger (GHZ) entangled states. The number of atoms needed to be detected does not increase as the number of the atoms in the GHZ state increases.  相似文献   

18.
Quantum teleportation is of significant meaning in quantum information. In this paper, we study the probabilistic teleportation of a two-qubit entangled state via a partially entangled Greenberger- Horne-Zeilinger (GHZ) state when the quantum channel information is only available to the sender. We formulate it as an unambiguous state discrimination problem and derive exact optimal positive-operator valued measure (POVM) operators for maximizing the probability of unambiguous discrimination. Only one three-qubit POVM for the sender, one two-qubit unitary operation for the receiver, and two cbits for outcome notification are required in this scheme. The unitary operation is given in the form of a concise formula, and the fidelity is calculated. The scheme is further extended to more general case for transmitting a two-qubit entangled state prepared in arbitrary form. We show this scheme is flexible and applicable in the hop-by-hop teleportation situation.  相似文献   

19.
The process of teleportation of a completely unknown 3-dimensional GHZ state is considered. Three maximally entangled 3-dimensional Bell states function as quantum channel in the scheme. This teleportation scheme can be directly generalized to teleport an unknown d-dimensional GHZ state.  相似文献   

20.
We have proposed an alternative scheme for teleportation of two-atom entangled state in cavity QED. It is based on the degenerate Raman interaction of a single-mode cavity field with a A-type three-level atom. The prominent feature of the scheme is that only one cavity is required, which is prior to the previous one. Moreover, the atoms need to be detected are reduced compared with the previous scheme. The experimental feasibility of the scheme is discussed. The scheme can easily be generalized for teleportation of N-atom GHZ entangled states. The number of the atoms needed to be detected does not increase as the number of the atoms in GHZ state increases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号