首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 89 毫秒
1.
Time‐of‐flight mass spectrometry experiments demonstrated that laser ablation generated and mass selected Au2TiO4? cluster anions can unexpectedly oxidize three CO molecules in an ion trap reactor. This is an improvement on the more commonly observed oxidation of at most two CO molecules by a doped cluster. Quantum chemistry calculations were performed to rationalize the reactions. The lowest energy isomer of Au2TiO4? contains a superoxide unit, the participation of which in CO oxidation can be promoted by the Au2 dimer. The Au2 dimer functions as a rather flexible electron reservoir in each CO oxidation step in terms of the release and storage of electrons to drive the dissociation of superoxide to peroxide and then to lattice oxygen atoms, which can be removed by reaction with CO molecules. This gas‐phase study enriches our understanding toward the nature of reactive oxygen species involved in gold‐catalyzed oxidation reactions.  相似文献   

2.
The study of chemical reactions between gold‐containing heteronuclear oxide clusters and small molecules can provide molecular level mechanisms to understand the excellent activity of gold supported by metal oxides. While the promotion role of gold in alkane transformation was identified in the clusters with atomic oxygen radicals (O?.), the role of gold in the systems without O?. is not clear. By employing mass spectrometry and quantum chemistry calculations, the reactivity of Au2VO3+ clusters with closed‐shell electronic structures toward ethane was explored. Both the dehydrogenation and ethene elimination channels were identified. It is gold rather than oxygen species initiating the C?H activation. The Au?Au dimer formed during the reactions plays important roles in ethane transformation. The reactivity comparison between Au2VO3+ and bare Au2+ demonstrates that Au2VO3+ not only retains the property of bare Au2+ that transforming ethane to dihydrogen, but also exhibits new functions in converting ethane to ethene, which reveals the importance of the composite system. This study provides a further understanding of the reactivity of metal oxide supported gold in alkane activation and transformation.  相似文献   

3.
Catalytic CO oxidation by molecular O2 is an important model reaction in both the condensed phase and gas‐phase studies. Available gas‐phase studies indicate that noble metal is indispensable in catalytic CO oxidation by O2 under thermal collision conditions. Herein, we identified the first example of noble‐metal‐free heteronuclear oxide cluster catalysts, the copper–vanadium bimetallic oxide clusters Cu2VO3–5? for CO oxidation by O2. The reactions were characterized by mass spectrometry, photoelectron spectroscopy, and density functional calculations. The dynamic nature of the Cu?Cu unit in terms of the electron storage and release is the driving force to promote CO oxidation and O2 activation during the catalysis.  相似文献   

4.
The co‐adsorption of O2 and CO on anionic sites of gold species is considered as a crucial step in the catalytic CO oxidation on gold catalysts. In this regard, the [Au2O2(CO)n]? (n=2–6) complexes were prepared by using a laser vaporization supersonic ion source and were studied by using infrared photodissociation spectroscopy in the gas phase. All the [Au2O2(CO)n]? (n=2–6) complexes were characterized to have a core structure involving one CO and one O2 molecule co‐adsorbed on Au2? with the other CO molecules physically tagged around. The CO stretching frequency of the [Au2O2(CO)]? core ion is observed around =2032–2042 cm?1, which is about 200 cm?1 higher than that in [Au2(CO)2]?. This frequency difference and the analyses based on density functional calculations provide direct evidence for the synergy effect of the chemically adsorbed O2 and CO. The low lying structures with carbonate group were not observed experimentally because of high formation barriers. The structures and the stability (i.e., the inertness in a sense) of the co‐adsorbed O2 and CO on Au2? may have relevance to the elementary reaction steps on real gold catalysts.  相似文献   

5.
Oxygen‐rich scandium cluster anions ScO3–5? are prepared by laser ablation and allowed to react with n‐butane in a fast‐flow reactor. A time‐of‐flight mass spectrometer is used to detect the cluster distribution before and after the reactions. The ScO3? and ScO4? clusters can react with n‐butane to produce ScO3H?, ScO3H2?, and ScO4H?, while the more oxygen‐rich cluster ScO5? is inert. The experiment suggests that unreactive cluster isomers of ScO3? and ScO4? are also present in the cluster source. Density functional theory and ab initio methods are used to calculate the structures and reaction mechanisms of the clusters. The theoretical results indicate that the unreactive and reactive cluster isomers of ScO3,4? contain peroxides (O22?) and oxygen‐centered radicals (O.?), respectively. The mechanisms and energetics for conversion of unreactive O22? to reactive O.? species are also theoretically studied.  相似文献   

6.
The single copper atom doped clusters CuAl4O7–9? can catalyze CO oxidation by O2. The CuAl4O7–9? clusters are the first group of experimentally identified noble‐metal free single atom catalysts for such a prototypical reaction. The reactions were characterized by mass spectrometry and density functional theory calculations. The CuAl4O9CO? is much more reactive than CuAl4O9? in the reaction with CO to generate CO2. One adsorbed CO is crucial to stabilize Cu of CuAl4O9? around +I oxidation state and promote the oxidation of another CO. The widely emphasized correlation between the catalytic reactivity of CO oxidation and Cu oxidation state can be understood at the strictly molecular level. The remarkable difference between Cu catalysis and noble‐metal catalysis was discussed.  相似文献   

7.
Two homoleptic alkynyl‐protected gold clusters with compositions of Na[Au25(C≡CAr)18] and (Ph4P)[Au25(C≡CAr)18] (Na? 1 and Ph4P? 1 , Ar=3,5‐bis(trifluoromethyl)phenyl) were synthesized via a direct reduction method. 1 is a magic cluster analogous to [Au25(SR)18]? in terms of electron counts and metal‐to‐ligand ratio. Single‐crystal structure analysis reveals that 1 has an identical Au13 kernel to [Au25(SR)18]?, but adopts a distinctly different arrangement of the six peripheral dimer staple motifs. The steric hindrance of alkynyl ligands is responsible for the D3 arrangement of Au25. The introduction of alkynyl also significantly changes the optical absorption features of the nanocluster as supported by DFT calculations. This magic cluster confirms that there is a similar but quite different parallel alkynyl‐protected metal cluster universe in comparison to the thiolated one.  相似文献   

8.
One of the fundamental processes in nature, the oxidation of water, is catalyzed by a small CaMn3O4?MnO cluster located in photosystem II (PS II). Now, the first successful preparation of a series of isolated ligand‐free tetrameric CanMn4?nO4+ (n=0–4) cluster ions is reported, which are employed as structural models for the catalytically active site of PS II. Gas‐phase reactivity experiments with D2O and H218O in an ion trap reveal the facile deprotonation of multiple water molecules via hydroxylation of the cluster oxo bridges for all investigated clusters. However, only the mono‐calcium cluster CaMn3O4+ is observed to oxidize water via elimination of hydrogen peroxide. First‐principles density functional theory (DFT) calculations elucidate mechanistic details of the deprotonation and oxidation reactions mediated by CaMn3O4+ as well as the role of calcium.  相似文献   

9.
The synthesis of high‐purity and high‐yield Au25 clusters protected by the basic pyridyl ethanethiol (HSCH2CH2Py, 4‐PyET and 2‐PyET) is presented. Single‐crystal X‐ray diffraction of the [Au25(4‐PyET)18]??Na+ clusters has revealed a structure similar to that known for the phenyl ethanethiolate analogue, but with pyridyl‐N coordination to Na+, a more relaxed ligand shell, and a profoundly layered arrangement in the solid state. Because of the pendant Py moiety, the [Au25(PyET)18]? clusters are endowed with unique (de)protonation equilibria, which has been characterized in detail by UV/Vis absorption and 1H NMR spectroscopy. [Au25(PyET)18]? clusters showed an unexpectedly H+‐dependent solubility that is tunable in aqueous and organic solvents. The successful synthesis of the basic Py‐terminated thiolate‐protected Au25 clusters paves the way to realize a new family of metalloid clusters possessing basic properties.  相似文献   

10.
The synthesis of high‐purity and high‐yield Au25 clusters protected by the basic pyridyl ethanethiol (HSCH2CH2Py, 4‐PyET and 2‐PyET) is presented. Single‐crystal X‐ray diffraction of the [Au25(4‐PyET)18]??Na+ clusters has revealed a structure similar to that known for the phenyl ethanethiolate analogue, but with pyridyl‐N coordination to Na+, a more relaxed ligand shell, and a profoundly layered arrangement in the solid state. Because of the pendant Py moiety, the [Au25(PyET)18]? clusters are endowed with unique (de)protonation equilibria, which has been characterized in detail by UV/Vis absorption and 1H NMR spectroscopy. [Au25(PyET)18]? clusters showed an unexpectedly H+‐dependent solubility that is tunable in aqueous and organic solvents. The successful synthesis of the basic Py‐terminated thiolate‐protected Au25 clusters paves the way to realize a new family of metalloid clusters possessing basic properties.  相似文献   

11.
The mechanism of the gold nanocluster‐catalyzed aerobic homocoupling of arylboronic acids has been elucidated by means of DFT calculations with Au20? as a model cluster for the Au:[poly(N‐vinylpyrrolidin‐2‐one)] catalyst. We found that oxygen affects the adsorption of phenylboronic acid and, by lowering the energy barrier, a water molecule enhances dissociation of the C?B bond, which is probably the rate‐determining step. The key role of oxygen is in activating the surface of the gold cluster by generating Lewis acidic sites for adsorption and activation of the phenylboronic acid, leading to the formation of biphenyl through a superoxo‐like species. Moreover, the oxygen adsorbed on the Au nanocluster can act as an oxidant for phenylboronic acid, giving phenol as a byproduct. As shown by NBO analysis, the basic aqueous reaction medium facilitates the reductive elimination process by weakening the Au?C bond, thereby enhancing the formation of biphenyl. The coupling of phenyl and reductive elimination of biphenyl occur at the top or facet site with low‐energy‐barrier through spillover of phenyl group on Au NC. The present findings are useful for the interpretation or design of other coupling reactions with Au NC.  相似文献   

12.
Atomic clusters are being actively studied for activation of methane, the most stable alkane molecule. While many cluster cations are very reactive with methane, the cluster anions are usually not very reactive, particularly for noble metal free anions. This study reports that the reactivity of molybdenum carbide cluster anions with methane can be much enhanced by adsorption of CO. The Mo2C2? is inert with CH4 while the CO addition product Mo2C3O? brings about dehydrogenation of CH4 under thermal collision conditions. The cluster structures and reactions are characterized by mass spectrometry, photoelectron spectroscopy, and quantum chemistry calculations, which demonstrate that the Mo2C3O? isomer with dissociated CO is reactive but the one with non‐dissociated CO is unreactive. The enhancement of cluster reactivity promoted by CO adsorption in this study is compared with those of reported systems of a few carbonyl complexes.  相似文献   

13.
Unravelling the atomic structures of small gold clusters is the key to understanding the origin of metallic bonds and the nucleation of clusters from organometallic precursors. Herein we report the X‐ray crystal structure of a charge‐neutral [Au18(SC6H11)14] cluster. This structure exhibits an unprecedented bi‐octahedral (or hexagonal close packing) Au9 kernel protected by staple‐like motifs including one tetramer, one dimer, and three monomers. Until the present, the [Au18(SC6H11)14] cluster is the smallest crystallographically characterized gold cluster protected by thiolates and provides important insight into the structural evolution with size. Theoretical calculations indicate charge transfer from surface to kernel for the HOMO–LUMO transition.  相似文献   

14.
A discrete sequence of bare gold clusters of well‐defined nuclearity, namely Au25+, Au38+ and Au102+, formed in a process that starts from gold‐bound adducts of the protein lysozyme, were detected in the gas phase. It is proposed that subsequent to laser desorption ionization, gold clusters form in the gas phase, with the protein serving as a confining growth environment that provides an effective reservoir for dissipation of the cluster aggregation and stabilization energy. First‐principles calculations reveal that the growing gold clusters can be electronically stabilized in the protein environment, achieving electronic closed‐shell structures as a result of bonding interactions with the protein. Calculations for a cluster with 38 gold atoms reveal that gold interaction with the protein results in breaking of the disulfide bonds of the cystine units, and that the binding of the cysteine residues to the cluster depletes the number of delocalized electrons in the cluster, resulting in opening of a super‐atom electronic gap. This shell‐closure stabilization mechanism confers enhanced stability to the gold clusters. Once formed as stable magic number aggregates in the protein growth medium, the gold clusters become detached from the protein template and are observed as bare Aun+ (n=25, 38, and 102) clusters.  相似文献   

15.
The Zintl anion (Ge2As2)2? represents an isostructural and isoelectronic binary counterpart of yellow arsenic, yet without being studied with the same intensity so far. Upon introducing [(PPh3)AuMe] into the 1,2‐diaminoethane (en) solution of (Ge2As2)2?, the heterometallic cluster anion [Au6(Ge3As)(Ge2As2)3]3? is obtained as its salt [K(crypt‐222)]3[Au6(Ge3As)(Ge2As2)3]?en?2 tol ( 1 ). The anion represents a rare example of a superpolyhedral Zintl cluster, and it comprises the largest number of Au atoms relative to main group (semi)metal atoms in such clusters. The overall supertetrahedral structure is based on a (non‐bonding) octahedron of six Au atoms that is face‐capped by four (GexAs4?x)x? (x=2, 3) units. The Au atoms bind to four main group atoms in a rectangular manner, and this way hold the four units together to form this unprecedented architecture. The presence of one (Ge3As)3? unit besides three (Ge2As2)2? units as a consequence of an exchange reaction in solution was verified by detailed quantum chemical (DFT) calculations, which ruled out all other compositions besides [Au6(Ge3As)(Ge2As2)3]3?. Reactions of the heavier homologues (Tt2Pn2)2? (Tt=Sn, Pb; Pn=Sb, Bi) did not yield clusters corresponding to that in 1 , but dimers of ternary nine‐vertex clusters, {[AuTt5Pn3]2}4? (in 2 – 4 ; Tt/Pn=Sn/Sb, Sn/Bi, Pb/Sb), since the underlying pseudo‐tetrahedral units comprising heavier atoms do not tend to undergo the said exchange reactions as readily as (Ge2As2)2?, according to the DFT calculations.  相似文献   

16.
Quantum chemistry calculations were carried out, using ONIOM2 methodology, to investigate the CO adsorption and oxidation on gold supported on Silicoaluminophospates (SAPO) molecular sieves Au/SAPO‐11 catalysts. Two models were studied, one containing one Au atom per site (Au? SAPO‐11), and the other with two Au atoms per site (Au2? SAPO‐11). The results reveal that the CO adsorption and oxidation are exothermic on Au/SAPO11 with an ΔE of ?41.0 kcal/mol and ΔE = ?52.0 kcal/mol, for the adsorption and oxidation, respectively. On the Au2? SAPO‐11 model, the CO adsorption and oxidation reaction occur, with a ΔE of ?29.7 kcal/mol and ?52 kcal/mol, respectively. According to our results, the oxidation reaction exhibits an Eley‐Rideal type mechanism with adsorbed CO. The theoretical calculations reveal that this type of material could be interesting to disperse Au and consequently to strengthen its catalytic use for different reactions. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem 110:2573–2582, 2010  相似文献   

17.
An in‐depth spectroscopic EPR investigation of a key intermediate, formally notated as [PVIVVVMo10O40]6? and formed in known electron‐transfer and electron‐transfer/oxygen‐transfer reactions catalyzed by H5PV2Mo10O40, has been carried out. Pulsed EPR spectroscopy have been utilized: specifically, W‐band electron–electron double resonance (ELDOR)‐detected NMR and two‐dimensional (2D) hyperfine sub‐level correlation (HYSCORE) measurements, which resolved 95Mo and 17O hyperfine interactions, and electron–nuclear double resonance (ENDOR), which gave the weak 51V and 31P interactions. In this way, two paramagnetic species related to [PVIVVVMo10O40]6? were identified. The first species (30–35 %) has a vanadyl (VO2+)‐like EPR spectrum and is not situated within the polyoxometalate cluster. Here the VO2+ was suggested to be supported on the Keggin cluster and can be represented as an ion pair, [PVVMo10O39]8?[VIVO2+]. This species originates from the parent H5PV2Mo10O40 in which the vanadium atoms are nearest neighbors and it is suggested that this isomer is more likely to be reactive in electron‐transfer/oxygen‐transfer reaction oxidation reactions. In the second (70–65 %) species, the VIV remains embedded within the polyoxometalate framework and originates from reduction of distal H5PV2Mo10O40 isomers to yield an intact cluster, [PVIVVVMo10O40]6?.  相似文献   

18.
A 23‐gold‐atom nanocluster was prepared by NaBH4‐mediated reduction of a solution of PhC?CAu and Ph3PAuSbF6 in CH2Cl2. The cluster composition was determined to be [Au23(PhC?C)9(Ph3P)6]2+ and single‐crystal X‐ray diffraction revealed that the cluster has an unprecedented Au17 kernel protected by three PhC2‐Au‐C2(Ph)‐Au‐C2Ph motifs and six Ph3P groups. The Au17 core can be viewed as the fusion of two Au10 units sharing a Au3 triangle. Electronic structure analysis from DFT calculations suggests that the stability of this unusual 12‐electron cluster is a result of the splitting of the superatomic 1D orbitals under D3h symmetry of the Au17 kernel. The discovery and determination of the structure of the Au23 cluster demonstrates the versatility of the alkynyl ligand in leading to the formation of new cluster compounds.  相似文献   

19.
The reaction of new dinuclear gold(I) organometallic complexes containing mesityl ligands and bridging bidentate phosphanes [Au2(mes)2(μ‐LL)] (LL=dppe: 1,2‐bis(diphenylphosphano)ethane 1 a , and water‐soluble dppy: 1,2‐bis(di‐3‐pyridylphosphano)ethane 1 b ) with Ag+ and Cu+ lead to the formation of a family of heterometallic clusters with mesityl bridging ligands of the general formula [Au2M(μ‐mes)2(μ‐LL)][A] (M=Ag, A=ClO4?, LL=dppe 2 a , dppy 2 b ; M=Ag, A=SO3CF3?, LL=dppe 3 a , dppy 3 b ; M=Cu, A=PF6?, LL=dppe 4 a , dppy 4 b ). The new compounds were characterized by different spectroscopic techniques and mass spectrometry The crystal structures of [Au2(mes)2(μ‐dppy)] ( 1 b ) and [Au2Ag(μ‐mes)2(μ‐dppe)][SO3CF3] ( 3 a ) were determined by a single‐crystal X‐ray diffraction study. 3 a in solid state is not a cyclic trinuclear Au2Ag derivative but it gives an open polymeric structure instead, with the {Au2(μ‐dppe)} fragments “linked” by {Ag(μ‐mes)2} units. The very short distances of 2.7559(6) Å (Au? Ag) and 2.9229(8) Å (Au? Au) are indicative of gold–silver (metallophilic) and aurophilic interactions. A systematic study of their luminescence properties revealed that all compounds are brightly luminescent in solid state, at room temperature (RT) and at 77 K, or in frozen DMSO solutions with lifetimes in the microsecond range and probably due to the self‐aggregation of [Au2M(μ‐mes)2(μ‐LL)]+ units (M=Ag or Cu; LL=dppe or dppy) into an extended chain structure, through Au? Au and/or Au? M metallophilic interactions, as that observed for 3 a . In solid state the heterometallic Au2M complexes with dppe ( 2 a – 4 a ) show a shift of emission maxima (from ca. 430 to the range of 520‐540 nm) as compared to the parent dinuclear organometallic product 1 a while the complexes with dppy ( 2 b–4 b ) display a more moderate shift (505 for 1 b to a max of 563 nm for 4 b ). More importantly, compound [Au2Ag(μ‐mes)2(μ‐dppy)]ClO4 ( 2 b ) resulted luminescent in diluted DMSO solution at room temperature. Previously reported compound [Au2Cl2(μ‐LL)] (LL dppy 5 b ) was also studied for comparative purposes. The antimicrobial activity of 1–5 and Ag[A] (A=ClO4?, SO3CF3?) against Gram‐positive and Gram‐negative bacteria and yeast was evaluated. Most tested compounds displayed moderate to high antibacterial activity while heteronuclear Au2M derivatives with dppe ( 2 a – 4 a ) were the more active (minimum inhibitory concentration 10 to 1 μg mL?1). Compounds containing silver were ten times more active to Gram‐negative bacteria than the parent dinuclear compound 1 a or silver salts. Au2Ag compounds with dppy ( 2 b , 3 b ) were also potent against fungi.  相似文献   

20.
Gas‐phase clusters are deemed to be σ‐aromatic when they satisfy the 4n+2 rule of aromaticity for delocalized σ electrons and fulfill other requirements known for aromatic systems. While the range of n values was shown to be quite broad when applied to short‐lived clusters found in molecular‐beam experiments, stability of all‐metal cluster‐like fragments isolated in condensed phase was previously shown to be mainly ascribed to two electrons (n=0). In this work, the applicability of this concept is extended towards solid‐state compounds by demonstrating a unique example of a storable compound, which was isolated as a stable [K([2.2.2]crypt)]+ salt, featuring a [Au2Sb16]4? cluster core possessing two all‐metal aromatic AuSb4 fragments with six delocalized σ electrons each (n=1). This discovery pushes the boundaries of the original idea of Kekulé and firmly establishes the usefulness of the σ‐aromaticity concept as a general idea for both small clusters and solid‐state compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号