首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The self‐assembly of triazole amphiphiles was examined in solution, the solid state, and in bilayer membranes. Single‐crystal X‐ray diffraction experiments show that stacked protonated triazole quartets (T4) are stabilized by multiple strong interactions with two anions. Hydrogen bonding/ion pairing of the anions are combined with anion–π recognition to produce columnar architectures. In bilayer membranes, low transport activity is observed when the T4 channels are operated as H+/X? translocators, but higher transport activity is observed for X? in the presence of the K+‐carrier valinomycin. These self‐assembled superstructures, presenting intriguing structural behaviors such as directionality, and strong anion encapsulation by hydrogen bonding supported by vicinal anion–π interactions can serve as artificial supramolecular channels for transporting anions across lipid bilayer membranes.  相似文献   

2.
Taking tetraoxacalix[2]arene[2]triazine as a functionalization platform, a series of new amphiphilic molecules were synthesized in 18 to 53 % yields by using a fragment coupling protocol. These amphiphilic molecules self‐assembled into stable vesicles in a mixture of THF and water, with the surface of the vesicles engineered by electron‐deficient cavities. Various anions are able to selectively influence the size of self‐assembled vesicles, following the order of F?<ClO4?<SCN?<BF4?<Br?<Cl?<NO3?, as revealed by DLS measurements. Such a sequence was independent with the hydration cost and in agreement with the binding strength of anions with tetraoxacalix[2]arene[2]triazine host molecule, indicating that the anion–π interaction most probably competed over other possible weak interactions and accounted for this interesting selectivity. In addition, the chloride permeation process across the membrane of the vesicles was also preliminarily studied by means of fluorescent experiments. This study, in addition to providing the potentiality of heteracalixaromatics as new models to construct functional vesicles, opens a new avenue to study the anion–π interactions in aqueous and also potentially in living systems.  相似文献   

3.
An unprecedented mode of assembly of helical motives and AgI ions in the crystalline state is described. The combination of a ZnII helicate based on a 2,2′‐bisdpm bearing peripheral benzonitrile moieties with AgX salts, leads to the formation of a tetranuclear core containing Ag–π interactions. Depending on the coordinating ability of the X? anion and the solvents used, the tetranuclear complex self‐assembles into coordination polymers of varying dimensionality. From the sequence of coordination events (Ag–π or Ag–peripheral site), one may envisage two possible construction scenarios. However, the Ag–π as primary event seems reasonable owing to the rather weak binding propensity of the nitrile group and the chelating nature of the π‐clefts.  相似文献   

4.
Interactions of anions with simple aromatic compounds have received growing attention due to their relevancy in various fields. Yet, the anion–π interactions are generally very weak, for example, there is no favorable anion–π interaction for the halide anion F? on the simplest benzene surface unless the H‐atoms are substituted by the highly negatively charged F. In this article, we report a type of particularly strong anion–π interactions by investigating the adsorptions of three halide anions, that is, F?, Cl?, and Br?, on the hydrogenated‐graphene flake using the density functional theory. The anion–π interactions on the graphene flake are shown to be unexpectedly strong compared to those on simple aromatic compounds, for example, the F?‐adsorption energy is as large as 17.5 kcal/mol on a graphene flake (C84H24) and 23.5 kcal/mol in the periodic boundary condition model calculations on a graphene flake C113 (the supercell containing a F? ion and 113 carbon atoms). The unexpectedly large adsorption energies of the halide anions on the graphene flake are ascribed to the effective donor–acceptor interactions between the halide anions and the graphene flake. These findings on the presence of very strong anion–π interactions between halide ions and the graphene flake, which are disclosed for the first time, are hoped to strengthen scientific understanding of the chemical and physical characteristics of the graphene in an electrolyte solution. These favorable interactions of anions with electron‐deficient graphene flakes may be applicable to the design of a new family of neutral anion receptors and detectors. © 2012 Wiley Periodicals, Inc.  相似文献   

5.
1,3‐Bis(pentafluorophenyl‐imino)isoindoline (AF) and 3,6‐di‐tert‐butyl‐1,8‐bis(pentafluorophenyl)‐9H‐carbazole (BF) have been designed as preorganized anion receptors that exploit anion–π interactions, and their ability to bind chloride and bromide in various solvents has been evaluated. Both receptors AF and BF are neutral but provide a central NH hydrogen bond that directs the halide anion into a preorganized clamp of the two electron‐deficient appended arenes. Crystal structures of host–guest complexes of AF with DMSO, Cl?, or Br? (AF:DMSO, AF:Cl?, and ${{\rm A}{{{\rm F}\hfill \atop 2\hfill}}}$ :Br?) reveal that in all cases the guest is located in the cleft between the perfluorinated flaps, but NMR spectroscopy shows a more complex situation in solution because of E,Z/Z,Z isomerism of the host. In the case of the more rigid receptor BF, Job plots evidence 1:1 complex formation with Cl? and Br?, and association constants up to 960 M ?1 have been determined depending on the solvent. Crystal structures of BF and BF:DMSO visualize the distinct preorganization of the host for anion–π interactions. The reference compounds 1,3‐bis(2‐pyrimidylimino)isoindoline (AN) and 3,6‐di‐tert‐butyl‐1,8‐diphenyl‐9H‐carbazole (BH), which lack the perfluorinated flaps, do not show any indication of anion binding under the same conditions. A detailed computational analysis of the receptors AF and BF and their host–guest complexes with Cl? or Br? was carried out to quantify the interactions in play. Local correlation methods were applied, allowing for a decomposition of the ring–anion interactions. The latter were found to contribute significantly to the stabilization of these complexes (about half of the total energy). Compounds AF and BF represent rare examples of neutral receptors that are well preorganized for exploiting anion–π interactions, and rare examples of receptors for which the individual contributions to the binding energy have been quantified.  相似文献   

6.
Anion–π interactions generally exist between an anion and an electron‐deficient π‐ring because of the electron‐accepting character of the ring. In this paper, we report orbital effect‐induced anomalous binding between electron‐rich π systems and F? through anion–π interactions calculated at the MP2/6‐31+G(d,p) and ωB97X‐D/6‐31+G(d,p) levels of theory. We find that anion–π interactions between F? and electron‐rich π rings increase markedly with increasing number of π electrons and size of the π rings. This is contrary to intuition because anion–π interactions would be expected to gradually decrease because of gradually increasing Coulombic repulsion between the negative charge of the anions and gradually increasing number of π electrons of the aromatic surfaces. Energy decomposition analysis showed that the key to this anomalous effect is the more effective delocalization of negative charge to the unoccupied π* orbitals of larger π rings, which is termed an “orbital effect”.  相似文献   

7.
Sulfide:quinone oxidoreductase (SQR) is a flavin‐dependent enzyme that plays a physiological role in two important processes. First, it is responsible for sulfide detoxification by oxidizing sulfide ions (S2? and HS?) to elementary sulfur and the electrons are first transferred to flavin adenine dinucleotide (FAD), which in turn passes them to the quinone pool in the membrane. Second, in sulfidotrophic bacteria, SQRs play a key role in the sulfide‐dependent respiration and anaerobic photosynthesis, deriving energy for their growth from reduced sulfur. Two mechanisms of action for SQR have been proposed: first, nucleophilic attack of a Cys residue on the C4 of FAD, and second, an alternate anionic radical mechanism by direct electron transfer from Cys to the isoalloxazine ring of FAD. Both mechanisms involve a common anionic intermediate that it is stabilized by a relevant anion–π interaction and its previous formation (from HS? and Cys‐S‐S‐Cys) is also facilitated by reducing the transition‐state barrier, owing to an interaction that involves the π system of FAD. By analyzing the X‐ray structures of SQRs available in the Protein Data Bank (PDB) and using DFT calculations, we demonstrate the relevance of the anion–π interaction in the enzymatic mechanism.  相似文献   

8.
In the salt 1‐methylpiperazine‐1,4‐diium bis(dihydrogen phosphate), C5H13N22+·2H2PO4, (I), and the solvated salt 2‐(pyridin‐2‐yl)pyridinium dihydrogen phosphate–orthophosphoric acid (1/1), C10H9N2+·H2PO4·H3PO4, (II), the formation of O—H...O and N—H...O hydrogen bonds between the dihydrogen phosphate (H2PO4) anions and the cations constructs a three‐ and two‐dimensional anionic–cationic network, respectively. In (I), the self‐assembly of H2PO4 anions forms a two‐dimensional pseudo‐honeycomb‐like supramolecular architecture along the (010) plane. 1‐Methylpiperazine‐1,4‐diium cations are trapped between the (010) anionic layers through three N—H...O hydrogen bonds. In solvated salt (II), the self‐assembly of H2PO4 anions forms a two‐dimensional supramolecular architecture with open channels projecting along the [001] direction. The 2‐(pyridin‐2‐yl)pyridinium cations are trapped between the open channels by N—H...O and C—H...O hydrogen bonds. From a study of previously reported structures, dihydrogen phosphate anions show a supramolecular flexibility depending on the nature of the cations. The dihydrogen phosphate anion may be suitable for the design of the host lattice for host–guest supramolecular systems.  相似文献   

9.
Three azide complexes with the tridentate ligand 2, 6‐bis(benzimidazol‐2‐yl)pyridine (H2BBIP) were synthesized and their complicated supramolecular interactions were investigated with single‐crystal X‐ray diffraction. Interestingly, the complexes are assembled by bifurcated hydrogen bonding, double helical π–π stacking, or anion–π stacking interactions of the benzimidazole rings by tuning the reaction conditions (temperature, ratio, solvent). Complex 1 is a mononuclear compound, namely, Mn(H2BBIP)N3(CH3O) · CH3OH. In its 3D supramolecular network, the nitrogen atom of the azide anion is acting as hydrogen bonding bifurcated acceptor. Complex 2 is a dinuclear compound, namely, Mn2(H2BBIP)2(N3)2 · (H2O)0.5. The dinuclear unit is connected by intramolecular π–π stacking interactions. Furthermore, double helical π–π stacking interactions in the benzimidazole rings are observed. Complex 3 , Mn2(H2BBIP)2(N3)2 · CH3OH, can be formulated as a pseudopolymorph of complex 2 , which exhibits intramolecular π–π stacking interactions as well as anion–π interactions in the dinuclear unit.  相似文献   

10.
Anion–π interactions between a π‐acidic aromatic system and an anion are gaining increasing recognition in chemistry and biology. Herein, the binding features of an electron‐deficient aromatic system (1,3,5‐trinitrobenzene (TNB)) and selected anions (OH?, Br?, and I?) are examined in the gas phase by using the combined information derived from collision‐induced dissociation experiments at variable energy, infrared multiple‐photon dissociation spectroscopy, and quantum chemical calculations. We provide spectroscopic evidence for two different structural motifs of anion–arene complexes depending on the nature of the anion. The TNB–OR? complexes (R=H, or alkyl groups which were studied earlier) adopt an anionic σ‐complex structure whereby RO? attacks the aromatic ring with covalent bond formation, and develops a tetrahedral ring carbon bound to H and OR. The halide complexes rather conform to a structure in which the TNB moiety is hardly altered, and the halogen is placed on an unsubstituted carbon atom over the periphery of the ring at a C–X distance that is appreciably longer than a typical covalent bond length. The ensuing structural motif, previously characterized in the solid state and named weak σ interaction, is now confirmed by an IR spectroscopic assay in the gas phase, in which the sampled species are unperturbed by crystal packing or solvation effects.  相似文献   

11.
We report the synthesis and X‐ray characterization of the N6‐benzyl‐N6‐methyladenine ligand (L) and three metal complexes, namely [Zn(HL)Cl3]·H2O ( 1 ), [Cd(HL)2Cl4] ( 2 ) and [H2L]2[Cd3(μ‐L)2(μ‐Cl)4Cl6]·3H2O ( 3 ). Complex 1 consists of the 7H‐adenine tautomer protonated at N3 and coordinated to a tetrahedral Zn(II) metal centre through N9. The octahedral Cd(II) in complex 2 is N9‐coordinated to two N6‐benzyl‐N6‐methyladeninium ligands (7H‐tautomer protonated at N3) that occupy apical positions and four chlorido ligands form the basal plane. Compound 3 corresponds to a trinuclear Cd(II) complex, where the central Cd atom is six‐coordinated to two bridging μ‐L and four bridging μ‐Cl ligands. The other two Cd atoms are six‐coordinated to three terminal chlorido ligands, to two bridging μ‐Cl ligands and to the bridging μ‐L through N3. Essentially, the coordination patterns, degree of protonation and tautomeric forms of the nucleobase dominate the solid‐state architectures of 1 – 3 . Additionally, the hydrogen‐bonding interactions produced by the endocyclic N atoms and NH groups stabilize high‐dimensional‐order supramolecular assemblies. Moreover, energetically strong anion–π and lone pair (lp)–π interactions are important in constructing the final solid‐state architectures in 1 – 3 . We have studied the non‐covalent interactions energetically using density functional theory calculations and rationalized the interactions using molecular electrostatic potential surfaces and Bader's theory of atoms in molecules. We have particularly analysed cooperative lp–π and anion–π interactions in 1 and π+–π+ interactions in 3 .  相似文献   

12.
Weak C? H???X hydrogen bonds are important stabilizing forces in crystal engineering and anion recognition in solution. In contrast, their quantitative influence on the stabilization of supramolecular polymers or gels has thus far remained unexplored. Herein, we report an oligophenyleneethynylene (OPE)‐based amphiphilic PtII complex that forms supramolecular polymeric structures in aqueous and polar media driven by π–π and different weak C‐H???X (X=Cl, O) interactions involving chlorine atoms attached to the PtII centers as well as oxygen atoms and polarized methylene groups belonging to the peripheral glycol chains. A collection of experimental techniques (UV/Vis, 1D and 2D NMR, DLS, AFM, SEM, and X‐Ray diffraction) demonstrate that the interplay between different weak noncovalent interactions leads to the cooperative formation of self‐assembled structures of high aspect ratio and gels in which the molecular arrangement is maintained in the crystalline state.  相似文献   

13.

The electrochemical behavior of cationic tetradecyltrimethylammonium bromide (TTABr), anionic sodium dodecylsulfate (SDS), cationic‐anionic (catanionic) mixed surfactant and self‐assembled solutions at Pt wire electrode has been studied by cyclic voltammetry (CV). On the basis of the cyclic voltammograms and determining the self‐assembled structures by using freeze‐fracture transmission electron microscopy (FF‐TEM), the mechanisms of the electrochemical reactions near the electrode for the two surfactant self‐assembled solutions, i.e., micelles and vesicles, are presented. When mixing TTABr and SDS, at the right mixing ratio of TTABr:SDS, vesicles are established spontaneously. The redox behavior of two vesicle‐phase solutions at a constant total concentration of 25 mmol·L?1 with the ratios of TTABr:SDS 9.35:0.65 of positive charges of bilayer membranes and 1.25:8.75 of negative charges of bilayer membranes are investigated by cyclic voltammetry. These cyclic voltammograms of vesicles with different charges are compared with those of 100 mmol · L?1 TTABr and 100 mmol · L?1 SDS micelle solutions. This CV study on surfactant self‐assembled solutions should open up a new method of study in surfactant science.  相似文献   

14.
We report the template‐directed synthesis of BlueCage6+, a macrobicyclic cyclophane composed of six pyridinium rings fused with two central triazines and bridged by three paraxylylene units. These moieties endow the cage with a remarkably electron‐poor cavity, which makes it a powerful receptor for polycyclic aromatic hydrocarbons (PAHs). Upon forming a 1:1 complex with pyrene in acetonitrile, however, BlueCage?6 PF6 exhibits a lower association constant Ka than its progenitor ExCage?6 PF6. A close inspection reveals that the six PF6? counterions of BlueCage6+ occupy the cavity in a fleeting manner as a consequence of anion–π interactions and, as a result, compete with the PAH guests. This conclusion is supported by a one order of magnitude increase in the Ka value for pyrene in BlueCage6+ when the PF6? counterions are replaced by much bulkier anions. The presence of anion–π interactions is supported by X‐ray crystallography, and confirms the presence of a PF6? counterion inside its cavity.  相似文献   

15.
Anion‐π catalysis functions by stabilizing anionic transition states on aromatic π surfaces, thus providing a new approach to molecular transformation. The delocalized nature of anion–π interactions suggests that they serve best in stabilizing long‐distance charge displacements. Aiming therefore for an anionic cascade reaction that is as charismatic as the steroid cyclization is for conventional cation‐π biocatalysis, reported here is the anion‐π‐catalyzed epoxide‐opening ether cyclizations of oligomers. Only on π‐acidic aromatic surfaces having a positive quadrupole moment, such as hexafluorobenzene to naphthalenediimides, do these polyether cascade cyclizations proceed with exceptionally high autocatalysis (rate enhancements kauto/kcat >104 m ?1). This distinctive characteristic adds complexity to reaction mechanisms (Goldilocks‐type substrate concentration dependence, entropy‐centered substrate destabilization) and opens intriguing perspectives for future developments.  相似文献   

16.
Three 3,3'-di(4-substituted-phenyl)-1,1'-isophthaloylbis(thiourea) compounds were designed as novel neutral anion receptors, and synthesized by simple steps in good yields. The single crystal structure of receptor 1 shows that a solvent molecule was captured by the host molecule through intermolecular hydrogen bonding. Moreover, it was self-assembled as a supramolecular system for the presence of abundant inter- and intramolecular hydrogen bonding and π-π interactions between phenyl groups. Their application as anion receptors has been examined by UV-Vis and ^1H NMR spectroscopy, showing that they had a higher selectivity for fluoride than other halides. The host and guest formed a 1 : 1 stoichiometry complex through hydrogen bonding interactions in the first step, then following a process of deprotonation in presence of an excess of F^- in the solvent of DMF.  相似文献   

17.
The concept of anion–π catalysis focuses on the stabilization of anionic transition states on aromatic π surfaces. Recently, we demonstrated the occurrence of epoxide‐opening ether cyclizations on aromatic π surfaces. Although the reaction proceeded through unconventional mechanisms, the obtained products are the same as those from conventional Brønsted acid catalysis, and in agreement with the Baldwin selectivity rules. Different mechanisms, however, should ultimately lead to new products, a promise anion–π catalysis has been reluctant to live up to. Herein, we report non‐trivial reactions that work with anion–π catalysis, but not with Brønsted acids, under comparable conditions. Namely, we show that the anion–π templated autocatalysis and epoxide opening with alcoholate–π interactions can provide access to unconventional ring chemistry. For smaller rings, anion–π catalysis affords anti‐Baldwin oxolanes, 2‐oxabicyclo[3.3.0]octanes, and the expansion of Baldwin oxetanes by methyl migration. For larger rings, anion–π templated autocatalysis is thought to alleviate the entropic penalty of folding to enable disfavored anti‐Baldwin cyclizations into oxepanes and oxocanes.  相似文献   

18.
Combination of an electron‐rich molecule (e.g. chloride anion or nitrile group) with a chlorinated cyclohexasilane ring produces a supramolecular inverse sandwich complex formed by two guests (Cl? or R?C≡N) strongly bonded to both faces of a planar host (Si6 ring). In‐depth theoretical studies were carried out to investigate the nature of the bonding interactions that generate such a stable complex. Second‐order Møller–Plesset perturbation theory (MP2) calculations confirmed that the presence of the Cl substituents is fundamental to the stability of the supramolecular assemblies. The density functional theory (DFT) functional wB97XD gave an estimation of the contribution of dispersion interactions to the binding energy. These interactions become more important as the Cl atoms of the rings are systematically replaced by methyl groups or hydrogen atoms. Analysis of the topology of the electron density and the reduced density gradient gave insight into the binding of the studied supramolecular assemblies.  相似文献   

19.
A new host molecule consists of four terpyridine groups as the binding sites with zinc(II) ion and a copillar[5]arene incorporated in the center as a spacer to interact with guest molecule was designed and synthesized. Due to the 120 ° angle of the rigid aromatic segment, a cross‐linked dimeric hexagonal supramolecular polymer was therefore generated as the result of the orthogonal self‐assembly of metal–ligand coordination and host–guest interaction. UV/Vis spectroscopy, 1H NMR spectroscopy, viscosity and dynamic light‐scattering techniques were employed to characterize and understand the cross‐linking process with the introduction of zinc(II) ion and guest molecule. More importantly, well‐defined morphology of the self‐assembled supramolecular structure can be tuned by altering the adding sequence of the two components, that is, the zinc(II) ion and the guest molecule. In addition, introduction of a competitive ligand suggested the dynamic nature of the supramolecular structure.  相似文献   

20.
By making use of the host–guest interactions between the host molecule tris‐o‐phenylenedioxycyclotriphosphazene (TPP) and the rod–coil block copolymer (BCP) poly(ethylene oxide)‐block‐poly(octyl 4′‐octyloxy‐2‐vinylbiphenyl‐4‐carboxylate) (PEO‐b‐PVBP), the supramolecular rod–rod block copolymer P(EO@TPP)‐b‐PVBP was constructed. It consists of a crystalline segment P(EO@TPP) with a hexagonal crystalline structure and a columnar nematic liquid‐crystalline segment (PVBP). As the PVBP segments arrange themselves as columnar nematic phases, the crystalline structure of the inclusion complex P(EO@TPP), which has a smaller diameter, is destroyed. The self‐assembled nanostructure is thus clearly affected by the interplay between the two blocks. On the basis of wide‐ and small‐angle X‐ray scattering analysis, we conclude that the supramolecular rod–rod BCP can self‐assemble into a cylinder‐in‐cylinder double hexagonal structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号