首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
The combination of nonsolvent‐induced phase separation and the self‐assembly of block copolymers can lead to asymmetric membranes with a thin highly ordered isoporous skin layer. The effective pore size of such membranes is usually larger than 15 nm. We reduced the pore size of these membranes by electroless gold deposition. We demonstrate that the pore sizes can be controlled precisely between 3 and 20 nm leading to a tunable sharp size discrimination in filtration processes. Besides fractionation of nanoparticles and biomaterials, controlled drug delivery is an attractive potential application.  相似文献   

2.
Stimuli‐responsive nanoporous membranes have attracted increasing interest in various fields due to their abrupt changes of permeation/separation in response to the external environment. Here we report ultrathin pH‐sensitive nanoporous membranes that are easily fabricated by the self‐assembly of poly(acrylic acid) (PAA) in a metal hydroxide nanostrand solution. PAA‐adsorbed nanostrands (2.5–5.0 nm) and PAA‐CuII nanogels (2.0–2.5 nm) grow competitively during self‐assembly. The PAA‐adsorbed nanostrands are deposited on a porous support to fabricate ultrathin PAA membranes. The membranes display ultrafast water permeation and good rejection as well as significant pH‐sensitivity. The 28 nm‐thick membrane has a water flux decrease from 3740 to 1350 L m?1 h?1 bar?1 (pH 2.0 to 7.0) with a sharp decrease at pH 5.0. This newly developed pH‐sensitive nanoporous membranes may find a wide range of applications such as controlled release and size‐ and charge‐selective separation.  相似文献   

3.
Metal–organic frameworks (MOFs) have emerged as porous solids of a superior type for the fabrication of membranes. However, it is still challenging to prepare a uniformly dispersed robust MOF hybrid membrane. Herein, we propose a simple and powerful strategy, namely, coordination‐driven in situ self‐assembly, for the fabrication of MOF hybrid membranes. On the basis of the coordination interactions between metal ions and ligands and/or the functional groups of the organic polymer, this method was confirmed to be feasible for the production of a stable membrane with greatly improved MOF‐particle dispersion in and compatibility with the polymer, thus providing outstanding separation ability. As an experimental proof of concept, a high‐quality ZIF‐8/PSS membrane was fabricated that showed excellent performance in the nanofiltration and separation of dyes from water.  相似文献   

4.
Zeolites are crystalline microporous aluminosilicates with periodic arrangements of cages and well‐defined channels, which make them very suitable for separating ions of different sizes, and thus also for use in battery applications. Herein, an ultra‐thin ZSM‐35 zeolite flake was introduced onto a poly(ether sulfone) based porous membrane. The pore size of the zeolite (ca. 0.5 nm) is intermediary between that of hydrated vanadium ions (>0.6 nm) and protons (<0.24 nm). The resultant membrane can thus be used to perfectly separate vanadium ions and protons, making this technology useful in vanadium flow batteries (VFB). A VFB with a zeolite‐coated membrane exhibits a columbic efficiency of >99 % and an energy efficiency of >81 % at 200 mA cm?2, which is by far the highest value ever reported. These convincing results indicate that zeolite‐coated membranes are promising in battery applications.  相似文献   

5.
Hierarchical solution self‐assembly has become an important biomimetic method to prepare highly complex and multifunctional supramolecular structures. However, despite great progress, it is still highly challenging to prepare hierarchical self‐assemblies on a large scale because the self‐assembly processes are generally performed at high dilution. Now, an emulsion‐assisted polymerization‐induced self‐assembly (EAPISA) method with the advantages of in situ self‐assembly, scalable preparation, and facile functionalization was used to prepare hierarchical multiscale sea urchin‐like aggregates (SUAs). The obtained SUAs from amphiphilic alternating copolymers have a micrometer‐sized rattan ball‐like capsule (RBC) acting as the hollow core body and radiating nanotubes tens of micrometers in length as the hollow spines. They can capture model proteins effectively at an ultra‐low concentration (ca. 10 nm ) after functionalization with amino groups through click copolymerization.  相似文献   

6.
Numerical self‐consistent field (SCF) lattice computations allow a priori determination of the equilibrium morphology and size of supramolecular structures originating from the self‐assembly of neutral block copolymers in selective solvents. The self‐assembly behavior of poly(ethylene oxide)‐block‐poly‐ε‐caprolactone (PEO‐PCL) block copolymers in water was studied as a function of the block composition, resulting in equilibrium structure and size diagrams. Guided by the theoretical SCF predictions, PEO‐PCL block copolymers of various compositions have been synthesized and assembled in water. The size and morphology of the resulting structures have been characterized by small‐angle X‐ray scattering, cryogenic transmission electron microscopy, and multiangle dynamic light scattering. The experimental results are consistent with the SCF computations. These findings show that SCF is applicable to build up roadmaps for amphiphilic polymers in solution, where control over size and shape are required, which is relevant, for instance, when designing spherical micelles for drug delivery systems © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 330–339  相似文献   

7.
Traditional micelle self‐assembly is driven by the association of hydrophobic segments of amphiphilic molecules forming distinctive core–shell nanostructures in water. Here we report a surprising chaotropic‐anion‐induced micellization of cationic ammonium‐containing block copolymers. The resulting micelle nanoparticle consists of a large number of ion pairs (≈60 000) in each hydrophobic core. Unlike chaotropic anions (e.g. ClO4?), kosmotropic anions (e.g. SO42?) were not able to induce micelle formation. A positive cooperativity was observed during micellization, for which only a three‐fold increase in ClO4? concentration was necessary for micelle formation, similar to our previously reported ultra‐pH‐responsive behavior. This unique ion‐pair‐containing micelle provides a useful model system to study the complex interplay of noncovalent interactions (e.g. electrostatic, van der Waals, and hydrophobic forces) during micelle self‐assembly.  相似文献   

8.
Four nanofiltration membranes, two negatively and two positively charged, were fabricated by interfacial polymerization. Three different amines, ethylenediamine (EDA), diethylenetriamine (DETA), and hyperbranched polyethyleneimine (PEI) were selected to react with two acyl chlorides, trimesoyl chloride (TMC) and terephthaloyl chloride (TPC). The two membranes containing hyperbranched PEI, PEI/TPC and PEI/TMC, are positively charged at the operational pH. But the other two membranes, EDA/TMC and DETA/TMC, are negatively charged. It is found that the two PEI membranes own special rejection characters during nanofiltration. The PEI/TPC membrane has a similar pore size to the EDA/TMC membrane but owns simultaneously the higher salt rejection and permeation flux. The PEI/TMC has a pore size as large as 1.5 nm and still has a higher NaCl rejection than the EDA/TMC membrane of which the pore size as small as 0.43 nm. We consider that the special rejection characters are derived from the special structure of PEI. The hyperbranched structure allows some of the charged amine groups drifting inside the pores and interacting with the ions in the pathway. The drifting amines increase salt rejection but have little effect on water permeation. It implies that a high flux and high rejection membrane for desalting can be obtained by attaching freely rotating charged groups.  相似文献   

9.
Template‐free fabrication of non‐spherical polymeric nanoparticles is desirable for various applications, but has had limited success owing to thermodynamic favorability of sphere formation. Herein we present a simple way to prepare cubic nanoparticles of block copolymers by self‐assembly from aqueous solutions at room temperature. Nanocubes with edges of 40–200 nm are formed spontaneously on different surfaces upon water evaporation from micellar solutions of triblock copolymers containing a central poly(ethylene oxide) block and terminal trimethylene carbonate/dithiolane blocks. These polymers self‐assemble into 28±5 nm micelles in water. Upon drying, micelle aggregation and a kinetically controlled crystallization of central blocks evidently induce solid cubic particle formation. An approach for preserving the structures of these cubes in water by thiol‐ or photo‐induced crosslinking was developed. The ability to solubilize a model hydrophobic drug, curcumin, was also explored.  相似文献   

10.
The self‐assembly of head‐tail type block copolymers composed of polyamidoamine dendron head block and poly(L ‐lysine) (PLL) tail block was studied using a light scattering technique and transmission electron microscopy. A PLL tail block in a head‐tail type block copolymer exhibits a coil‐to‐helix transition as a result of the change in solvent quality from water to methanol. When the PLL tail block takes a helical conformation in high methanol content, the resulting head‐tail type block copolymer has a defined three‐dimensional structure like that of a protein molecule. Self‐assemblies of such block copolymers having a totally fixed molecular shape spontaneously form polymersome‐like self‐assemblies with an extremely narrow size distribution through converging to a thermodynamically stable assembling state. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1217–1223, 2009  相似文献   

11.
New block copolymers Polystyrene‐b‐poly (2,2,2‐trifluoroethyl acrylate)‐b‐Polystyrene (PS‐PTFEA‐PS) with controlled molecular weight (Mn=5000‐11000 g?mol?1) and narrow molecular weight distribution (Mw/Mn=1.13‐1.17) were synthesized via RAFT polymerization. The molecular structure and component of PS‐PTFEA‐PS block copolymers were characterized through 1H NMR, 19F NMR, GPC, FT‐IR and elemental analysis. The porous films of such copolymers with average pore size of 0.80‐1.34 μm and good regularity were fabricated via a static breath‐figure (BF) process. The effects of solvent, temperature, and polymer concentration on the surface morphology of such film were investigated. In addition, microstructured spheres and fibers of such block copolymers were fabricated by electrospinning process and observed by scanning electron microscopy (SEM). Furthermore, the hydrophobicity of porous films, spheres, and fibers was investigated. The porous film showed a good hydrophobicity with the water‐droplet contact angles of 129°, and the fibers showed higher hydrophobicity with the water‐droplet contact angles of 142°. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 678–685  相似文献   

12.
To separate small molecules from the solvent with high permeability and selectivity, the membrane process is thought to be highly effective with much lower energy consumption when compared to the traditional thermal‐based separation process. To achieve high solvent permeance, a sub‐10 nm thick polyamide nanofiltration membrane was synthesized through interfacial polymerization of ethidium bromide (EtBr) and trimesoyl chloride (TMC). Thanks to the extremely low solubility of the EtBr monomer in the organic phase, the polymerization process was strictly limited at the interface of the water and hexane, leading to an ultrathin polyamide membrane with a thickness down to sub‐10 nm. When used in nanofiltration, these ultrathin membranes display ultrafast water permeation of 40 liter per square meter per hour per bar (L m?2 h?1 bar?1), and a high Congo red rejection rate of 93 %. This work demonstrates a new route to synthesize ultrathin polyamide membranes by the traditional interfacial polymerization.  相似文献   

13.
Highly porous polystyrene‐block‐poly(4‐vinylpyridine) (PS‐b‐P4VP) diblock copolymer membranes are prepared using carbohydrates as additives. Therefore α‐cyclodextrine, α‐(D )‐glucose, and saccharose (cane sugar) are tested for the membrane formation of three different PS‐b‐P4VP polymers. The addition of the carbohydrates leads to an increasing viscosity of the membrane solutions due to hydrogen bonding between hydroxyl groups of the carbohydrates and pyridine units of the block copolymer. In all cases, the membranes made from solution with carbohydrates have higher porosity, an improved narrow pore distribution on the surface and a higher water flux as membranes made without carbohydrates with the same polymer, solvent ratio, and polymer concentration.  相似文献   

14.
Simple self‐assembly techniques to fabricate non‐spherical polymer particles, where surface composition and shape can be tuned through temperature and the choice of non‐solvents was developed. A series of amphiphilic polystyrene‐b‐poly(2‐ethyl‐2‐oxazoline) block copolymers were prepared and through solvent exchange techniques using varying non‐solvent composition a range of non‐spherical particles were formed. Faceted phase separated particles approximately 300 nm in diameter were obtained when self‐assembled from tetrahydrofuran (THF) into water compared with unique large multivesicular particles of 1200 nm size being obtained when assembled from THF into ethanol (EtOH). A range of intermediate structures were also prepared from a three part solvent system THF/water/EtOH. These techniques present new tools to engineer the self‐assembly of non‐spherical polymer particles. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 750–757  相似文献   

15.
Histidine functional block copolymers are thermally self‐assembled into polymer micelles with poly‐N‐isopropylacrylamide in the core and the histidine functionality in the corona. The thermally induced self‐assemblies are reversible until treated with Cu2+ ions at 50 °C. Upon treatment with 0.5 equivalents of Cu2+ relative to the histidine moieties, metal‐ion coordination locks the self‐assemblies. The self‐assembly behavior of histidine functional block copolymers is explored at different values of pH using DLS and 1H NMR. Metal‐ion coordination locking of the histidine functional micelles is also explored at different pH values, with stable micelles forming at pH 9, observed by DLS and imaged by atomic force microscopy. The thermal self‐assembly of glycine functional block copolymers at pH 5, 7, and 9 is similar to the histidine functional materials; however, the self‐assemblies do not become stable after the addition of Cu2+, indicating that the imidazole plays a crucial role in metal‐ion coordination that locks the micelles. The reversibility of the histidine‐copper complex locking mechanism is demonstrated by the addition of acid to protonate the imidazole and destabilize the polymer self‐assemblies. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 1964–1973  相似文献   

16.
《先进技术聚合物》2018,29(2):795-805
In this research, composite membranes were prepared by cross‐linking of poly(vinyl alcohol) (PVA) and glutaraldehyde (GA) on amidoximated ultrafiltration membrane. During this procedure, it was taken advantage of large‐area graphene oxide sheets as graphitic nets in the active layer. These membranes were used to remove an industrial textile dye (Chrysophenine GX) from wastewater. Optimum condition for membrane preparation was 1.5% wt. of PVA, 1.5% wt. of GA, and 0.3% wt. of graphene oxide sheets. Permeation results showed that electrostatic charges on membrane surface have easily converted from positive into negative ones. Contact angle was significantly decreased (63.5° to 28.8°). Final nanofiltration membrane showed lowest fouling rate during removing the industrial direct dye (flux recovery ratio: 96.60%, reversible fouling ratio: 23.82%, and irreversible fouling ratio: 3.39%). Pore size of this membrane was <8 nm, and Chrysophenine GX was eliminated by 98.5% with water permeability of 12.23 L/m2.h.bar.  相似文献   

17.
We report the synthesis of telechelic poly(norbornene) and poly(cyclooctene) homopolymers by ring‐opening metathesis polymerization (ROMP) and their subsequent functionalization and block copolymer formation based on noncovalent interactions. Whereas all the poly(norbornene)s contain either a metal complex or a hydrogen‐bonding moiety along the polymer side‐chains, together with a single hydrogen‐bonding‐based molecular recognition moiety at one terminal end of the polymer chain. These homopolymers allow for the formation of side‐chain‐functionalized AB and ABA block copolymers through self‐assembly. The orthogonal natures of all side‐ and main‐chain self‐assembly events were demonstrated by 1H NMR spectroscopy and isothermal titration calorimetry. The resulting fully functionalized block copolymers are the first copolymers combining both side‐ and main‐chain self‐assembly, thereby providing a high degree of control over copolymer functionalization and architecture and bringing synthetic materials one step closer to the dynamic self‐assembly structures found in nature.  相似文献   

18.
A series of amphiphilic graft copolymers of poly (vinylidene fluoride‐co‐chlorotrifluoroethylene)‐g‐poly(2‐vinyl pyridine), P (VDF‐co‐CTFE)‐g‐P2VP, with different degrees of P2VP grafting (from 26.3 to 45.6 wt%) was synthesized via one‐pot atom transfer radical polymerization (ATRP). The amphiphilic properties of P (VDF‐co‐CTFE)‐g‐P2VP graft copolymers allowed itself to self‐assemble into nanoscale structures. P (VDF‐co‐CTFE)‐g‐P2VP graft copolymers were introduced into neat P (VDF‐co‐CTFE) as additives to form blending membranes. When two different solvents, N‐methyl‐2‐pyrrolidone (NMP) and dimethylformamide (DMF), were used, specific organized crystalline structures were observed only in the NMP systems. P (VDF‐co‐CTFE)‐g‐P2VP played a pivotal role in controlling the morphology and pore structure of membranes. The water flux of the membranes increased from 57.2 to 310.1 L m?2 h?1 bar?1 with an increase in the PVDF‐co‐CTFE‐g‐P2VP loading (from 0 to 30 wt%) due to increased porosity and hydrophilicity. The flux recovery ratio (FRR) increased from 67.03% to 87.18%, and the irreversible fouling (Rir) decreased from 32.97% to 12.82%. Moreover, the pure gas permeance of the membranes with respect to N2 was as high as 6.2 × 104 GPU (1 GPU = 10–6 cm3[STP]/[s cm2 cmHg]), indicating their possible use as a porous polymer support for gas separation applications.  相似文献   

19.
Polymerization‐induced self‐assembly (PISA) has become the preferred method of preparing self‐assembled nano‐objects based on amphiphilic block copolymers. The PISA methodology has also been extended to the realization of colloidal nanocomposites, such as polymer–silica hybrid particles. In this work, we compare two methods to prepare nanoparticles based on self‐assembly of block copolymers bearing a core‐forming block with a reactive alkoxysilane moiety (3‐(trimethoxysilyl)propyl methacrylate, MPS), namely (i) RAFT emulsion polymerization using a hydrophilic macroRAFT agent and (ii) solution‐phase self‐assembly upon slow addition of a selective solvent. Emulsion polymerization under both ab initio and seeded conditions were studied, as well the use of different initiating systems. Effective and reproducible chain extension (and hence PISA) of MPS via thermally initiated RAFT emulsion polymerization was compromised due to the hydrolysis and polycondensation of MPS occurring under the reaction conditions employed. A more successful approach to block copolymer self‐assembly was achieved via polymerization in a good solvent for both blocks (1,4‐dioxane) followed by the slow addition of water, yielding spherical nanoparticles that increased in size as the length of the solvophobic block was increased. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 420–429  相似文献   

20.
In this article, the synthesis and self‐assembly of a novel well‐defined biocompatible amphiphilic POEGMA‐PDMS‐POEGMA triblock copolymer were studied. The copolymer was synthesized by atom transfer radical polymerization of oligo(ethylene glycol) methyl ether methacrylate (OEGMA) using α,ω‐dibromo polydimethylsiloxane macroinitiator (Br‐PDMS‐Br). Br‐PDMS‐Br was synthesized through the esterification of α,ω‐hydroxypropyl polydimethylsiloxane and 2‐bromoisobutyryl bromide. The structures of the copolymers were confirmed by proton nuclear magnetic resonance spectroscopy, and gel permeation chromatography. The copolymers showed reversible aggregation in response to temperature cycles with a lower critical solution temperature (LCST) between 61 and 66 °C, as determined by ultraviolet‐visible spectrophotometry and dynamic light scattering. The LCST values increased in proportion to the length of the hydrophilic block and were lower than that of the POEGMA homopolymer. The self‐assembly behavior of the copolymers in aqueous solution was investigated by fluorescence spectroscopy and transmission electron microscopy. The critical micelle concentration value (1.08–0.26 10?6 mol L?1) decreased as the length of the POEGMA chain increased. The POEGMA‐PDMS‐POEGMA copolymers can easily self‐assemble into spherical micelles in aqueous solution. Such biocompatible block copolymers may be attractive candidates as ‘‘smart'' thermo‐responsive drug delivery systems. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2684‐2691  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号