首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Vanadium flow battery (VFB) is one of the most reliable stationary electrochemical energy-storage technologies, and a membrane with high vanadium resistance and proton conductivity is essential for manufacturing high-performance VFBs. In this study, a two-dimensional (2D) MFI-type zeolite membrane was fabricated from zeolite nanosheet modules, which displayed excellent vanadium resistance (0.07 mmol L−1 h−1) and proton conductivity (0.16 S cm−1), yielding a coulombic efficiency of 93.9 %, a voltage efficiency of 87.6 %, and an energy efficiency of 82.3 % at 40 mA cm−2. The self-discharge period of a VFB equipped with 2D MFI-type zeolite membrane increased up to 116.2 h, which was significantly longer than that of the commercial perfluorinated sulfonate membrane (45.9 h). Furthermore, the corresponding battery performance remained stable over 1000 cycles (>1500 h) at 80 mA cm−2. These findings demonstrate that 2D MFI-type membranes are promising ion-conductive membranes applicable for stationary electrochemical energy-storage devices.  相似文献   

2.
Flexible and scalable energy storage solutions are necessary for mitigating fluctuations of renewable energy sources. The main advantage of redox flow batteries is their ability to decouple power and energy. However, they present some limitations including poor performance, short‐lifetimes, and expensive ion‐selective membranes as well as high price, toxicity, and scarcity of vanadium compounds. We report a membrane‐free battery that relies on the immiscibility of redox electrolytes and where vanadium is replaced by organic molecules. We show that the biphasic system formed by one acidic solution and one ionic liquid, both containing quinoyl species, behaves as a reversible battery without any membrane. This proof‐of‐concept of a membrane‐free battery has an open circuit voltage of 1.4 V with a high theoretical energy density of 22.5 Wh L−1, and is able to deliver 90 % of its theoretical capacity while showing excellent long‐term performance (coulombic efficiency of 100 % and energy efficiency of 70 %).  相似文献   

3.
研究全钒液流电池的质子传导膜制备过程,提出高分子亲水/疏水相互作用诱导溶液相分离的成膜原理,进行制膜工艺放大,满足全钒液流电池的电堆制造与储能工程应用需要. 突破现有“离子交换”传质机理的限制,利用电解液中不同价态钒离子与氢离子相比,存在体积和荷电量的差异,通过离子“筛分”和“静电排斥”效应进行离子选择性渗透. 制成孔径分布在4 ~ 7 nm的聚偏氟乙烯质子传导膜,电导率为3.5×10-2 S•cm-1,爆破强度高于0.3 MPa,面积800 mm × 900 mm. 利用扩散实验测定膜对H+/VO2+离子选择性,选择性系数达到306. 利用该质子传导膜组装的15 kW电堆,充电/放电循环性能稳定,电流密度达到100 mA•cm-2,在700多个循环过程电流效率为93%,能量效率超过72%,具备产业化应用前景.  相似文献   

4.
Diffusion coefficients of vanadium ions in cation exchange membranes are of interest because they allow to calculate the ion exchange across the membrane in an all vanadium redox flow battery which leads to undesired cross contamination and energy losses in the battery system. Diffusion coefficients of V2+, V3+, VO2+ and VO+2 ions in CMS, CMV and CMX cation exchange membranes have been determined by measuring the ion exchange fluxes of these ions with H3O+ ions using a dialysis cell. The experimental data are evaluated on the basis of integrated flux equations which require also ion exchange sorption equilibria obtained already in previous work. The lowest diffusion coefficients are observed in the CMS membrane for all vanadium ions. This membrane turns out to be the most suitable one for being applied in a vanadium battery since it is expected to prevent most effectively cross contamination of vanadium ions.  相似文献   

5.
Aiming to develop a suitable ion exchange membrane for vanadium redox flow battery (VRB), a new kind of imidazolium salt type anion exchange membrane based on the copolymer of N‐vinylimidazole and 2,2,2‐trifluoroethyl methacrylate has been prepared. The membrane is characterized by means of water uptake, ion‐exchange capacity, ionic conductivity, and thermal stability. Furthermore, a VRB with this membrane is assembled, and the performance of such VRB is evaluated. The permeability experiments show that this membrane has reasonable low permeability of vanadium ions. The coulombic efficiency (CE) and energy efficiency (EE) of VRB with the synthesized membrane are 99.5% and 75.0%, whereas the CE and EE of the VRB with Nafion® 117 membrane are 82.6% and 72.6%, respectively. The synthesized membrane shows good chemical stability in VRB via more than 4000 cycles test. Therefore, this membrane shows good applicable potential in VRB. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
As an alternative to Nafion® ion exchange membrane, an inexpensive commercially-available Radel® polymer was sulfonated, fabricated into a thin membrane, and evaluated for its performance in a vanadium redox flow battery (VRFB). The sulfonated Radel (S-Radel) membrane showed almost an order of magnitude lower permeability of VO2+ ions (2.07 × 10?7 cm2/min), compared to Nafion 117 (1.29 × 10?6 cm2/min), resulting in better coulombic efficiency (~ 98% vs. 95% at 50 mA/cm2) and lower capacity loss per cycle. Even though the S-Radel membrane had a slightly higher membrane resistance, the energy efficiency of the VRFB with the S-Radel membrane was comparable to that of Nafion because of its better coulombic efficiency resulting from the lower vanadium ion crossover. The S-Radel membrane exhibited good performance up to 40 cycles, but a decline in performance at later cycles was observed, likely as a result of membrane degradation.  相似文献   

7.
A sulfonated polyimide (SPI)/TiO2 composite membrane was fabricated by a blend way to improve its performance in vanadium redox flow battery (VRB). Both EDS and XRD results verify the successful preparation of the SPI/TiO2 composite membrane. The surface SEM image shows its homogeneous structure. TG analysis identifies its thermal stability. The SPI/TiO2 composite membrane possesses much lower permeability of VO2+ ions (2.02?×?10?7 cm2 min?1) and favorable proton conductivity (3.12?×?10?2 S cm?1). The VRB single cell with SPI/TiO2 composite membrane shows higher coulombic efficiency (93.80–98.00 %) and energy efficiency (83.20–67.61 %) at the current density ranged from 20 to 80 mA cm?2 compared with that with Nafion 117 membrane. And the operational stability of the as-prepared composite membrane is good after 50 times of cycling tests. Therefore, the low-cost SPI/TiO2 composite membrane with excellent battery performance exhibits a great potential for application in VRB.  相似文献   

8.
本文采用壳聚糖-磷钨酸层对Nafion膜表面分别进行单面和双面修饰改性,研究了修饰模式对Nafion膜钒离子渗透率、电导率及离子选择性的影响. 结果表明,单面、双面修饰改性均会使Nafion膜的钒离子渗透率显著降低,最高降幅分别达到89.9% (单面修饰) 和92.7% (双面修饰);单面、双面修饰改性均会使Nafion膜的电导率下降,但存在明显差异,在相同修饰厚度条件下,双面修饰改性对Nafion膜电导率的影响比单面修饰改性更小。因此,双面修饰复合膜展示出了比单面修饰复合膜更高的离子选择性,并且在修饰层厚度为17 μm时达到最大值(1.12×105 S•min•cm-3). 基于优化的双面修饰Nafion膜的全钒液流电池,在充放电流密度30 mA•cm-2 时,库伦效率和能量效率分别达到93.5%和 80.7%, 并且在测试时间内展示出良好的循环稳定性.  相似文献   

9.
To improve the performance of Nafion membrane as a separator in vanadium redox battery (VRB) system, a Nafion/TiO2 hybrid membrane was fabricated by a hydrothermal method. The primary properties of this hybrid membrane were measured and compared with the Nafion membrane. The Nafion/TiO2 hybrid membrane has a dramatic reduction in crossover of vanadium ions compared with the Nafion membrane. The results of scanning electron microscope, energy dispersive X-ray spectroscopy, and X-ray diffraction of the hybrid membrane revealed that the TiO2 phase was formed in the bulk of the prepared membrane. Cell tests identified that the VRB with the Nafion/TiO2 hybrid membrane presented a higher coulombic efficiency (CE) and energy efficiency (EE), and a lower self-discharge rate compared with that of the Nafion system. The CE and EE of the VRB with the hybrid membrane were 88.8% and 71.5% at 60 mA cm−2, respectively, while those of the VRB with Nafion membrane were 86.3% and 69.7% at the same current density. Furthermore, cycling tests indicated that the Nafion/TiO2 hybrid membrane can be applied in VRB system.  相似文献   

10.
An ion imprinted polymer coated onto magnetite (Fe3O4) nanoparticles is shown to be a useful magnetic sorbent for the fairly selective preconcentration of vanadium. The sorbent was prepared by radical copolymerization of 3-(triethoxysilyl)propyl methacrylate (the monomer), ethylene glycol dimethacrylate (the cross-linker), and the vanadium(IV) complex of 1-(2-pyridylazo-2-naphthol) in the presence of magnetite nanoparticles. The material was characterized by IR spectroscopy, scanning electron microscopy, and thermal analysis. The vanadium(IV) ions were removed from the imprint by a solution containing thiourea and HCl, and the eluent was submitted to AAS. The analytical efficiency and relative standard deviation are 99.4 and ±2.3 %, respectively, under optimum conditions, and the limit of detection is 20 ng mL?1. The method was successfully applied to the preconcentration and determination of vanadium(IV) ions in crude oil. Figure
An ion imprinted polymer is coated on to magnetite nanoparticles as a useful magnetic sorbent for the fairly selective preconcentration of vanadium which can be used for vanadium determination in crude oil.  相似文献   

11.
Novel polysulfone membranes with bunch‐like tertiary amine groups are synthesized with high ion selectivity and outstanding chemical stability for vanadium redox flow batteries (VRFBs). The bunch‐like tertiary amine groups simultaneously act as an ionic conductor for proton hopping and vanadium ion transport obstacles. The performance of the membrane is tuned via controlling the grafting degree of the chloromethylated polysulfone. The results show that membranes show increasing proton over vanadium ion (σ/p ) selectivity with increasing functional tertiary groups. VRFBs assembled with the prepared membranes demonstrate an impressive Coulombic efficiency of 98.9% and energy efficiency of 90.9% at a current density of 50 mA cm−2. Furthermore, the prepared membrane reported in this work shows excellent stability in 1 m VO2 + solution at 35 °C over 240 h. Overall, the synthesized polymers provide a new insight into the design of high‐performance membranes toward VRFB applications.

  相似文献   


12.
Sulfonated polyimide (SPI) and ZrO2 are blended to prepare a series of novel SPI/ZrO2 composite membranes for vanadium redox flow battery (VRFB) application. Results of atomic force microscopy and X‐ray diffraction reveal that ZrO2 is successfully composited with SPI. All SPI/ZrO2 membranes possess high proton conductivity (2.96–3.72 × 10?2 S cm?1) and low VO2+ permeability (2.18–4.04 × 10?7 cm2 min?1). SPI/ZrO2‐15% membrane is determined as the optimum one on account of its higher proton selectivity and improved chemical stability. The VRFB with SPI/ZrO2‐15% membrane presents higher coulombic efficiency and energy efficiency than that with Nafion 117 membrane at the current density, which ranged from 20 to 80 mA cm?2. Cycling tests indicate that the SPI/ZrO2‐15% membrane has good operation stability in the VRFB system. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
The vanadium flow battery(VFB) has been considered as one of the most promising large-scale energy storage technologies in terms of its design flexibility, long cycle life, high efficiency and high safety. However, the high cost prevents the VFB technology from broader market penetration. Improving the power density of the VFB is an effective solution to reduce its cost due to the reduced material consumption and stack size. Electrode, as one of the main components in the VFB, providing the reactions sites for redox couples, has an important effect on the voltage loss of the VFB associated with electrochemical polarization, ohmic polarization and concentration polarization. Extensive research has been carried out on the electrode modification to reduce polarizations and hence improve the power density of the VFB. In this review, state-of-the-art of various modification methods on the VFB electrode materials is overviewed and summarized, and the future research directions helpful to reduce polarization loss are presented.  相似文献   

14.

An ion imprinted polymer coated onto magnetite (Fe3O4) nanoparticles is shown to be a useful magnetic sorbent for the fairly selective preconcentration of vanadium. The sorbent was prepared by radical copolymerization of 3-(triethoxysilyl)propyl methacrylate (the monomer), ethylene glycol dimethacrylate (the cross-linker), and the vanadium(IV) complex of 1-(2-pyridylazo-2-naphthol) in the presence of magnetite nanoparticles. The material was characterized by IR spectroscopy, scanning electron microscopy, and thermal analysis. The vanadium(IV) ions were removed from the imprint by a solution containing thiourea and HCl, and the eluent was submitted to AAS. The analytical efficiency and relative standard deviation are 99.4 and ±2.3 %, respectively, under optimum conditions, and the limit of detection is 20 ng mL−1. The method was successfully applied to the preconcentration and determination of vanadium(IV) ions in crude oil.

An ion imprinted polymer is coated on to magnetite nanoparticles as a useful magnetic sorbent for the fairly selective preconcentration of vanadium which can be used for vanadium determination in crude oil.

  相似文献   

15.
Ion exchange membranes play a key role in all vanadium redox flow batteries (VRFBs). The mostly available commercial membrane for VRFBs is Nafion. However, its disadvantages, such as high cost and severe vanadium‐ion permeation, become obstacles for large‐scale energy storage. It is thus crucial to develop an efficient membrane with low permeability of vanadium ions and low cost to promote commercial applications of VRFBs. In this study, graphene oxide (GO) has been employed as an additive to the Nafion 212 matrix and a composite membrane named rN212/GO obtained. The thickness of rN212/GO has been reduced to only 41 μm (compared with 50 μm Nafion 212), which indicates directly lower cost. Meanwhile, rN212/GO shows lower permeability of vanadium ions and area‐specific resistance compared to the Nafion 212 membrane due to the abundant oxygen‐containing functional groups of GO additives. The VRFB cells with the rN212/GO membrane show higher Coulombic efficiencies and lower capacity decay than those of VRFB cells with the Nafion 212 membrane. Therefore, the cost‐effective rN212/GO composite membrane is a promising alternative to suppress migration of vanadium ions across the membrane to set up VRFB cells with better performances.  相似文献   

16.
Proton exchange membrane (PEM) is a key component of vanadium redox flow battery (VRB), and its proton/vanadium selectivity plays an important role in the performance of a VRB single cell. Commercially available perfluorosulfonic acid (Nafion) membranes have been widely used due to their excellent proton conductivity and favorable chemical resistance. However, the large pore size micelle channels formed by the pendant sulfonic acid groups lead to the excessive penetration of vanadium ions, which seriously affects the coulombic efficiency (CE) of the single cell and accelerates the self-discharge rate of the battery. Additionally, the expensive cost of Nafion is also an important reason to limit its large-scale application. In this paper, the dense and low-cost hydrocarbon polymer polybenzimidazole (PBI) is used as the matrix material of the PEM, which is doped with phosphotungstic acid (PWA) to acquire excellent proton conductivity, and the intrinsic high resistance of PBI for vanadium ions is helpful to obtain high proton/vanadium selectivity. Considering the enormous water solubility of PWA and its easy leaching from membrane, organic polymer nano-Kevlar fibers (NKFs) are utilized as the anchoring agent of PWA, which achieves good anchoring effect and solves the problem of the poor compatibility between inorganic anchoring agent and the polymer matrix. The formation of PWA functionalized NKFs was characterized by scanning electron microscope (SEM) and Fourier transform infrared (FT-IR) spectroscopy. The anchoring stability of NKFs for PWA was evaluated by UV-Vis spectroscopy. The characterizations including water uptake, swelling ratio, ion exchange capacity, proton conductivity, vanadium ion permeability and ion selectivity were performed to evaluate the basic properties of the membranes. At the same time, the charge-discharge, self-discharge and cycle performance of single cell assembled with the composite membrane and recast Nafion were tested at various current densities from 40 to 100 mA∙cm-2. Simple tuning for the filling amount of NKFs@PWA gives the composite membrane superior ion selectivity including an optimal value of 3.26 × 105 S∙min∙cm-3, which is 8.5 times higher than that of recast Nafion (0.34 × 105 S∙min∙cm-3). As a result, the VRB single cell assembled with the composite membrane exhibits higher CE and significantly lower self-discharge rate compared with recast Nafion. Typically, the CE of the VRB based on PBI-(NKFs@PWA)-22.5% membrane is 97.31% at 100 mA∙cm-2 while the value of recast Nafion is only 90.28%. The open circuit voltage (VOC) holding time above 0.8 V of the single cell assembled with the composite membrane is 95 h, which is about 2.4 times as long as that of recast Nafion-based VRB. The utilization of PBI as a separator for VRB can effectively suppress the penetration of vanadium ions, achieve higher proton/vanadium selectivity and superior battery performance as well as reduce the cost of the PEM, which will play an active role in the promotion of VRB applications.  相似文献   

17.
Kinetic-catalytic spectrophotometric methods were proposed for the determination of trace amounts of vanadium element as vanadium(Ⅳ) and/or V(Ⅴ) ions. The vanadium(Ⅳ) as VO^2+ ion and/or vanadium(Ⅴ) as VO3^- ion showed a catalytic effect on the kinetic reactions between a color reagent such as methylthymol blue (MTB) or SPADNS and bromate in acidic media. The rate of decrease in the absorbance of the reagent MTB at 440 nm or SPADNS at 510 nm was proportional to concentration of V(Ⅳ) and/or V(Ⅴ) ions in the solution. The linear ranges for determination of vanadium were obtained in the range of 1.0-150 and 5.0-100.0 μg/L by the fixed-time and slope methods, respectively, with using MTB as reagent. In the presence of SPADNS as reagent, the calibration curves were made in the amplitude 1.0-200.0 and 5.0-150 μg/L of vanadium ion by the fixed-time and slope methods, respectively. Using fixed-time method, the limits of detection were obtained to be 0.5 and 0.7 μg/L of vanadium in the presence of MTB and SPADNS as reagents, respectively. Detection limits of vanadium by slope method and reagents of SPADNS and MTB were obtained to be 3.5 and 3.8 μg/L of vanadium, respectively. The proposed methods were applied successfully to determination of vanadium in synthetic and real samples.  相似文献   

18.
The incorporation of titanium and vanadium metal ions into the structural framework of MFI zeolite imparts the material with catalytic properties. These zeolites are good candidates for catalytic membranes. The Sil-1, TS-1 and VS-1 membranes were grown on pre-seeded porous stainless steel support using hydrothermal synthesis method. The effects of silica and metal (i.e. Ti and V) contents, template concentration and temperature on the zeolite membrane growth and morphology were investigated. The addition of Ti and V metal ions inhibits the zeolite growth and, thus, restricting the amount of metals (i.e. Ti and V) that can be effectively incorporated into the membrane without compromising its separation performance. Optimum Si and TPAOH concentrations were identified for the synthesis of well-intergrown zeolite membranes. An increase in the synthesis temperature can result in a change in film crystallographic orientation and the appearance of imperfections in the form of imbedded zeolite crystals. Single gas permeation experiments were conducted for noble gases (He and Ar), inorganic gases (H2, N2, SF6) and hydrocarbons (methane, n-C4, i-C4) to determine the separation performance of these membranes. The results indicate that the gas transport through Sil-1 and VS-1 membranes is predominantly through the zeolite pores and that the presence of vanadium in VS-1 has significant influence on the permeance of adsorbed gases (e.g. hydrocarbons). Laminar flow is important for the TS-1 membrane that exhibited microscopic cracks.  相似文献   

19.
Doping the well‐known metal–organic framework MIL‐53(Al) with vanadium(IV) ions leads to significant changes in the breathing behaviour and might have repercussions on the catalytic behaviour as well. To understand the properties of such a doped framework, it is necessary to determine where dopant ions are actually incorporated. Electron paramagnetic resonance (EPR) and electron–nuclear double resonance (ENDOR) are applied to reveal the nearest environment of the paramagnetic vanadium(IV) dopant ions. EPR spectra of as‐synthesised vanadium‐doped MIL‐53 are recorded at S‐, X‐, Q‐ and W‐band microwave frequencies. The EPR spectra suggest that at low dopant concentrations (1.0–2.6 mol %) the vanadium(IV) ions are well dispersed in the matrix. Varying the vanadium dopant concentration within this range or the dopant salt leads to the same dominant EPR component. In the ENDOR spectra, hyperfine (HF) interactions with 1H, 27Al and 51V nuclei are observed. The HF parameters extracted from simulations strongly suggest that the vanadium(IV) ions substitute Al in the framework.  相似文献   

20.
The low Coulombic efficiency and serious safety issues resulting from uncontrollable dendrite growth have severely impeded the practical applications of lithium (Li) metal anodes. Herein we report a stable quasi‐solid‐state Li metal battery by employing a hierarchical multifunctional polymer electrolyte (HMPE). This hybrid electrolyte was fabricated via in situ copolymerizing lithium 1‐[3‐(methacryloyloxy)propylsulfonyl]‐1‐(trifluoromethanesulfonyl)imide (LiMTFSI) and pentaerythritol tetraacrylate (PETEA) monomers in traditional liquid electrolyte, which is absorbed in a poly(3,3‐dimethylacrylic acid lithium) (PDAALi)‐coated glass fiber membrane. The well‐designed HMPE simultaneously exhibits high ionic conductivity (2.24×10?3 S cm?1 at 25 °C), near‐single ion conducting behavior (Li ion transference number of 0.75), good mechanical strength and remarkable suppression for Li dendrite growth. More intriguingly, the cation permselective HMPE efficiently prevents the migration of negatively charged iodine (I) species, which provides the as‐developed Li‐I batteries with high capacity and long cycling stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号