首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Natural fiber usage rather than the synthetic fibers is attracted by researchers due to their special features such as biodegradable, inexpensive, easy availability, low density, and good thermal properties. This present work deliberates the characterization and testing of untreated and treated fibers extracted from the common reed plant stem. From the characterization, it reveals that the treated fibers had higher crystallinity index value with 75.41% and cellulose content having 64.56%. The thermal stability and mechanical properties of fiber was improved by alkali treatment. The surface roughness of the fibers due to the elimination of the noncellulosic substance on alkali treatment is evidenced by SEM.  相似文献   

2.
There is a growing interest in the development of new materials through utilization of natural resources. This paper describes evaluation of water leached and alkali treated chopped grass fiber reinforced phenol formaldehyde composite. Here alkali treatment of grass fiber was carried out by varying the concentration of sodium hydroxide. The thermal stability of the composite was assessed by thermogravimetric analysis (TGA). Fourier transformation infrared spectroscopic study of both water leached and alkali treated grass fiber‐phenolic resin composite was also performed. Water absorption and swelling behavior of grass fiber phenolic resin composites in water were studied and the alkali treated grass fiber‐resin composite showed less water absorption and swelling. A composite prepared from 1% alkali treated grass fiber and 55% resin, showed the highest tensile strength whereas a composite prepared from 5% alkali treated grass fiber and 55% resin, showed maximum flexural properties. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

3.
The aim of the present study was to investigate and compare the mechanical properties of untreated and chemically modified Borassus fiber–reinforced epoxy composites. Composites were prepared by the hand lay-up process by reinforcing Borassus fibers with epoxy matrix. To improve the fiber-matrix adhesion properties, alkali (NaOH) and alkali combined with silane (3-aminopropyltriethoxysilane) treatment of the fiber surface was carried out. Examinations through Fourier transform-infrared spectroscopy and scanning electron microscopy (SEM) were conducted to investigate the structural and physical properties of the Borassus fibers. Tensile properties such as modulus and strength of the composites made with chemically modified and untreated Borassus fibers were studied using a universal testing machine. Based on the experimental results, it was found that the tensile properties of the Borassus-reinforced epoxy composites were significantly improved as compared with the neat epoxy. It was also found that the fiber treated with a combination of alkali and silane exhibited superior mechanical properties to alkali-treated and untreated fiber composites. The nature of the fiber/matrix interface was examined through SEM of cryo-fractured samples. Chemical resistance of composites was also found to be improved with chemically modified fiber composites.  相似文献   

4.
This article presents the extraction and effect of alkali treatment on the physical, chemical, tensile, and thermal characteristics of fiber strands obtained from Napier grass, a renewable biomass. In order to improve these properties, the Napier grass fiber strands were treated with sodium hydroxide. The alkali treatment was carried out using NaOH solution at three different concentrations (5, 10, and 15%) for 2 h. Characterization of untreated and alkali-treated Napier grass fiber strands was carried out by studying the chemical composition, surface morphology, functional group variation, crystallinity, and tensile and thermal behavior. It was found that untreated fiber strands have lower cellulose content, crystallinity, tensile properties, and thermal stability than alkali-treated fiber strands. Napier grass fiber strands treated with 10% NaOH showed optimum tensile strength, modulus, and percentage elongation with an improvement of 51.9, 47.3, and 12.1% respectively. Based on the properties determined for alkali-treated Napier grass fiber strands, we expect that these fibers will be suitable for use as a reinforcement in natural fiber composites.  相似文献   

5.
This work was carried out to characterize the changes induced on wool fiber by clay treatment. Technical measurements were studied including Fourier-transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), thermal degradation analysis (TGA), scanning electron microscopy (SEM), moisture regain measurement (MRM), and tensile strength test (TST). The intensity of major peaks in FTIR spectra of the clay treated sample is in favor of chemical changes of the polypeptide functional groups. DSC results indicated that clay treatment of wool enhances heat and thermal barrier properties of fiber. TGA results stated lower thermal degradation of clay treated wool compared with untreated one. One of the main advantages of clay application on wool could be its positive effect on the moisture absorption of wool.  相似文献   

6.
Banana fiber, a waste product of banana cultivation, has been used to prepare banana fiber reinforced soy protein composites. Alkali modified banana fibers were characterized in terms of density, denier and crystallinity index. Fourier transformed infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and thermogravimetric analysis (TGA) were also performed on the fibers. Soy protein composites were prepared by incorporating different volume fractions of alkali-treated and untreated fibers into soy protein isolate (SPI) with different amounts of glycerol (25%–50%) as plasticizer. Composites thus prepared were characterized in terms of mechanical properties, SEM and water resistance. The results indicate that at 0.3 volume fraction, tensile strength and modulus of alkali treated fiber reinforced soy protein composites increased to 82% and 963%, respectively, compared to soy protein film without fibers. Water resistance of the composites increased significantly with the addition of glutaraldehyde which acts as cross-linking agent. Biodegradability of the composites has also been tested in the contaminated environment and the composites were found to be 100% biodegradable.  相似文献   

7.
Agriculture biomass is an alternative possible solution for the extraction of cellulose, compared to the classical soft and hard wood. However, the valorization of cellulose is challenging for the researchers as it involves multiple steps. In the present study, the raw fibers of flax, hemp, and milkweed stem fibers were purified in single step using hydrogen peroxide in water. By this method authors successfully extracted the purified cellulose fibers without damaging the fiber length. The purified fibers were characterized to understand the thermal, functional, crystalline, and morphological properties by thermogravimetric analysis (TGA), Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), and scanning electron microscopy (SEM). The FTIR results showed the effective removal of lignin and significant improvement in thermal stability was observed by TGA. Evidently, the SEM results showed significant improvement in the morphology compared to that of the raw fibers. XRD results showed that the treatment does not affect the crystallinity of the fibers.  相似文献   

8.
Agro waste bio mass are creating challenges for environment in term of air pollution due to improper disposal. Rice milling is the process in which rice husk is produced as by-product. The agro-waste rice husk has tremendous potential to be used either in its raw form or in ash form. The inherent component of this waste cellulose provides enhanced properties in a reinforced composite when used as filler. Rice husk is the hard outer layer and covering rice seed, which makes reinforcement challenging in its original form. Fiber surface treatment significantly improves adhesion with matrix and various thermo chemical properties of filler as well as of composites. NaOH treatment is cost-effective and it ensures the adhesion with matrix by removal of hemicellulose and lignin. The chemical treatment of agro-waste (rice husk) is performed with 5% alkali solutions of NaOH in water. Results are compared with the properties of untreated rice husk for thermal and morphological characterizations. In the present work, we are trying to quantify the impact of chemical treatment on rice husk thermal decomposition and its kinetics. Thermogravimetric analysis and kinetics study of thermal degradation, provide key input towards pyrolysis pattern of rice husk, while FTIR and SEM analysis provide the prospects of this bio filler using a reinforcing agent to develop green composite and productive disposal. The FTIR data helps to find the possibilities of blending different bio fillers and natural fibers to find suitable reinforcing substances. The average activation energy of treated fiber is noted as 137.95 by KAS method and 108.08 by FWO method as compared to 55.56 by KAS method & 54.26 by FWO method for untreated rice husk.  相似文献   

9.
This article reports on the extraction and characterization of novel natural cellulose fibers obtained from the maize (tassel) plant. Cellulose was extracted from the agricultural residue (waste biomaterial) of maize tassel. The maize tassel fibers were obtained after treatment with NaOH and were carefully characterized while the chemical composition was determined. The chemical composition of the maize tassel fibers showed that the cellulose content increased from 41% to 56%, following alkali treatment. FT-IR spectroscopic analysis of maize tassel fibers confirmed that this chemical treatment also shows the way to partial elimination of hemicelluloses and lignin from the structure of the maize tassel fibers. X-ray diffraction results indicated that this process resulted in enhanced crystallinity of the maize tassel fibers. The thermal properties of the maize tassel fibers were studied by the TGA technique and were found to have improved significantly. The degradation temperature of the alkali-treated maize tassel fiber is higher than that of the untreated maize tassel fibers. This value convincingly showed the potential of maize tassel fibers for use in reinforced biocomposites and waste water treatment.  相似文献   

10.
Napier grass fiber strands were used as reinforcement to obtain composites with epoxy resin as matrix. To improve the surface, these fiber strands were treated with alkali solution. The composites were prepared by means of hand lay-up molding, then the effects of Napier grass fiber strand loading on mechanical properties such as tensile, flexural and impact, interfacial bonding, and chemical resistance were investigated. The composite with 20 wt.% Napier grass fiber strands gives excellent mechanical properties and chemical resistance, showing that it has the best bonding and adhesion of the composites. SEM micrographs of fractured and worn surfaces clearly demonstrate the interfacial adhesion between fiber and matrix. Alkali-treated Napier grass fiber strand–reinforced composites have better resistance to water and chemicals than the untreated fiber strand composites.  相似文献   

11.
The interface of fibrous composites is a key factor to the whole properties of the composites. In this study, the effects of air dielectric barrier discharge (DBD) plasma discharge power density on surface properties of poly(p‐phenylene benzobisoxazole) (PBO) fiber and the interfacial adhesion of PBO fiber reinforced poly(phthalazinone ether sulfone ketone) (PPESK) composite were investigated by several characterization methods, including XPS, SEM, signal fiber tensile strength, interlaminar shear strength, and water absorption. After the air DBD plasma treatment at a power density of 41.4 W/cm3, XPS analysis showed that some polar functional groups were introduced on the PBO fiber surface, especially the emergence of a new oxygen‐containing group (?O–C = O group). SEM observations revealed that the air DBD plasma treatment had a great influence on surface morphologies of the PBO fiber, while the signal fiber tensile strength results showed only a small decline of 5.9% for the plasma‐treated fiber. Meanwhile, interlaminar shear strength value of PBO/PPESK composite was increased to 44.71 MPa by 34.5% and water absorption of the composite decreased from 0.46% for the untreated specimen to 0.27%. The results showed that the air DBD plasma treatment can effectively improve the properties of the PBO fiber surface and the PBO/PPESK composite interface. Results obtained from the above analyses also showed that both the fiber surface and the composite interface performance would be reduced when an undue plasma discharge power density was applied. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
In this work, the influence of fiber content and alkali treatment on the mechanical and thermal properties of Acacia leucophloea fiber-reinforced epoxy composites was studied. Ten composite samples were fabricated by varying fiber content (5, 10, 15, 20, and 25 wt%); both untreated and treated fiber were soaked in a 5% NaOH solution for 45 min by using hand-layup method. The composite reinforced with 20 wt% treated fiber content exhibited better mechanical properties and thermal properties. Fourier transform infrared analysis, morphological analysis by atomic force microscope, and scanning electron microscope of composites were also performed.  相似文献   

13.
Studies on the behavior of molecular transport properties such as thermal conductivity, gas permeability, volume and surface resistivity have been carried out for the naturally woven coconut sheath (CS) fiber reinforced composites with the addition of nanoclay and chemical treatment of fiber. The compression molding technique was used to fabricate the coconut sheath/clay reinforced hybrid composites. The morphological studies such as X-ray diffractogram (XRD), transmission electron microscopy (TEM) and scanning electron microscopy (SEM) have been carried out for polyester nanocomposites and coconut sheath fiber. The decreased gas permeability, thermal conductivity and volume and surface resistivity have been observed with increasing the weight percentage of nanoclay in polyester matrix. In chemical modifications, the alkali and silane treated coconut sheath reinforced composites have shown great influence on the transport properties due to the increasing hydrophilic nature by the topographical changes at the fiber surface. Dielectric strength has also been reported in this paper for all types of composites. Infra-red (IR) spectra have also been taken to study the physical and chemical structural changes of treated coconut sheath.  相似文献   

14.
Biocomposites of waste polypropylene (WPP) with bagasse fiber as reinforcing component can be readily prepared based on waste management application. Bagasse was subjected to chemical treatments using sodium hydroxide (NaOH) and vinyl triethoxysilane to modify the fiber properties. Scanning electron microscope and Fourier-transform infrared spectroscopy were used to elucidate fiber modification after treatments. Compounding of WPP at various ratios of bagasse was produced by melt mixing. Treated and untreated fiber composites were investigated under conditions of gamma irradiation at 20?kGy. In general behavior, at different fiber loadings, treated biocomposites have better properties than untreated one and fiber treated with silane is the best. Furthermore, treated biocomposites represented more biodegradability under soil than untreated one. The results of mechanical properties showed that the as-prepared fiber composites have superior irradiation-resistant properties.  相似文献   

15.
碳纤维的抗氧化处理   总被引:3,自引:1,他引:2  
用硼化合物对碳纤维进行抗氧化处理,提高了纤维的高温抗氧化性能。用热分析、电子显显微镜、表面电子能谱和X射线衍射等进行了研究,结果表明:碳纤维经过硼化合物处理后,氧化活化能提高123.4%,热氧化分解点提高268℃,高温使用寿命提高许多倍,但物理机械性能变化不大。  相似文献   

16.
In this study, a composite of thermoplastic polyurethane reinforced with short Kenaf fiber (Hibiscus cannabinus) was prepared via melt-blending method using Haake Polydrive R600 internal mixer. Effect of various sodium hydroxide NaOH concentrations, namely 2, 4 and 6% on tensile, flexural and impact strength was studied. Mean values were determined for each composite according to ASTM standards. Tensile, flexural and impact strength negatively correlates with higher concentrations of NaOH. Scanning electron microscope (SEM) was used to examine the surface of both treated and untreated fibers as well as fracture surface of tensile specimens. Morphology of treated and untreated fibers showed a rougher surface of treated fibers. It also showed that some of high concentrations of NaOH treated fibers have NaOH residues on their surface. This was confirmed by energy dispersive X-ray point shooting performed on the same SEM machine. Morphology of surface of fracture indicated that untreated composite had a better adhesion. Treated and untreated fibers as well as composites were characterized using Fourier transform infrared spectroscopy (FTIR). FTIR of treated fibers showed that NaOH treatment resulted in removal of hemicelluloses and lignin. FTIR also showed that untreated composite has more H-bonding than all treated composites. Thermal characteristic studies using thermogravimetry analysis and differential scanning calorimetry showed that untreated composite was more thermally stable than treated composites.  相似文献   

17.
The thermal conductivity and thermal diffusivity of oil‐palm‐fiber‐reinforced untreated (Sample 1) and differently treated composites were measured with the transient plane source technique at room temperature and under normal pressure. All the composites were 40% oil‐palm fiber by weight. The fibers were treated with alkali (Composite 2), silane (Composite 3), and acetic acid (Composite 4) and reinforced in a phenolformaldehyde matrix. The thermal conductivity and thermal diffusivity of the composites increased after treatment to different extents. The thermal conductivity of the treated fibers as well as of the untreated fibers was calculated theoretically. The model results show that the thermal conductivity of the untreated fiber was smaller than the thermal conductivity of the treated fibers. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 916–921, 2000  相似文献   

18.
Treatment of oil palm empty fruit bunch (EFB) and jute fibers is carried out by using 2-hydroxy ethyl acrylate (2-HEA) to increase the interfacial bonding of fibers with the epoxy matrix. Fourier transform-infrared (FT-IR) spectroscopy and scanning electron microscopy (SEM) were used to measure the change of surface composition of the fibers after treatment. Modified oil palm and jute fibers were used as reinforcements for epoxy matrix to fabricate hybrid composites by the hand lay-up technique. Tensile and morphological properties of hybrid composites were studied, and tensile properties of hybrid composites prepared from chemically treated oil palm/jute fibers were found to be better than those of untreated hybrid composites. SEM micrographs disclose that interfacial bonding between fiber and matrix significantly improved in the hybrid composites. Developed hybrid composites can be exploited as alternative materials for development of automotive and structural components instead of synthetic fiber–reinforced polymer composites.  相似文献   

19.
Compatibility of natural fiber with hydrophobic matrix is a herculean task in literature works. Surface treatment is a well-known approach for increasing the strength of interfacial adhesion between fibres and polymer matrices. Therefore, this study aims to examine the impact of surface treatment with zinc oxide nanoparticles (ZnONPs) in improving hydrophobicity of kenaf fiber (KF) to enhance the compatibility between KF and polymer matrix. In this study, KF reinforced unsaturated polyester composites (KF/UPE) were fabricated by the hand lay-up method with varying fiber loadings (wt %) of 10 20, 30, and 40. KF were treated with five different contents of ZnONPs (1% to 5 wt%) to make UPE/KF-ZnONPs composites. The composites were studied in terms of wetting response (contact angle measure and water absorption), mechanical properties, chemical structure (FTIR), crystalline structure (XRD), and surface morphology (SEM, AFM). The investigational findings indicate that the composite samples incorporating ZnONPs exhibit optimum hydrophobicity and mechanical properties, as they possessed a higher contact angle than the untreated KF composite. The optimum content of ZnONPs was found to be 2 wt%. Regarding water absorption, the untreated UPE/KF composites absorbed more water than the treated UPE/KF-ZnONPs composites. SEM images showed changes in the morphology of the KF, while FTIR analysis proved the presence of ZnONPs functional groups in the UPE/KF composites. AFM images revealed that the ZnONPs could actively produce nanolevel roughness, advantageous to the hydrophobic characteristics.  相似文献   

20.
Carbon fabric (CF) was surface treated with silane-coupling agent modification, HNO3 oxidation, combined surface treatment, respectively. The friction and wear properties of the carbon fabric reinforced phenolic composites (CFP), sliding against GCr15 steel rings, were investigated on an M-2000 model ring-on-block test rig. Experimental results revealed that combined surface treatment largely reduced the friction and wear of the CFP composites. Scanning electron microscope (SEM) investigation of the worn surfaces of the CFP composites showed that combined surface modified CFP composite had the strongest interfacial adhesion and the smoothest worn surface under given load and sliding rate. SEM and X-ray photoelectron spectroscopy (XPS) study of carbon fiber surface showed that the fiber surface became rougher and the oxygen concentration increased greatly after combined surface treatment, which improved the adhesion between the fiber and the phenolic resin matrix and hence to improve the friction-reduction and anti-wear properties of the CFP composite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号