首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Europium ions (Eu3+) and Lithium ions (Li+) codoped gadolinium orthovanadate with a tetragonal phase had been successfully synthesized by an efficient hydrothermal method. X-ray diffraction (XRD), scanning electron microscopy (SEM), and photoluminescence (PL) were utilized to characterize the microstructure, morphology, and luminescent properties of as-prepared samples. The various concentrations (0~14 at.%) of Li ions were applied to investigate the effect of Li+ co-doping concentration on the crystalline structure, microstructure, and emission intensity of GdVO4:Eu3+, Li+ nanophosphors. The results demonstrated that Li+ ion co-doping changes the lattice parameters in two different ways. Moreover, the optical photoluminescent property was obtained when the Li+ co-doping concentration is 10 at.%. The influence of Li+ co-doping on the concentration quenching effect of Eu3+ was discussed as well. The concentration quenching threshold of Eu3+ was increased distinguishably. The potential mechanism was proposed in this paper.  相似文献   

2.
The fluorescence from Yb+ ions trapped in an rf trap was detected by driving the2S1/22P1/2 transition at 369.52 nm with the radiation generated by sum-frequency mixing of diode-laser and argon-ion-laser radiation. The rf resonance absorption signal as well as the fluorescence signal, when the Yb+ ions were continuously irradiated by the resonant uv radiation, faded out with a decay time shorter than the storage time. This observation suggests that the Yb+ ions disappeared from the trap with the irradiation of the resonant uv radiation.  相似文献   

3.
We report on the implementation of a thin wire Paul trap with tungsten wire electrodes for trapping ions. The ion trap geometry, though compact, allows large optical access enabling a moderate finesse Fabry–Perot cavity to be built along the ion trap axis. The design allows a vapor-loaded magneto-optical trap of alkali atoms to be overlapped with trapped atomic or molecular ions. The construction and design of the trap are discussed, and its operating parameters are determined, both experimentally and numerically, for Rb+. The macromotion frequencies of the ion trap for 85Rb+ are determined to be f r  = 43 kHz for the radial and f z  = 54 kHz for the axial frequencies, for the experimentally determined optimal operating parameters. The destructive off axis ion extraction and detection by ion counting is demonstrated. Finally, evidence for the stabilization and cooling of trapped ions, due to ion–atom interactions, is presented by studying the ion-atom mixture as a function of interaction time. The utility and flexibility of the whole apparatus, for a variety of atomic physics experiments, are discussed in conclusion.  相似文献   

4.
Alumina–europia mixed oxides with 5 and 10 wt.% Eu2O3 were studied by Mössbauer spectroscopy, 27Al MAS-NMR and X-ray diffraction (XRD). The samples were prepared by the sol–gel technique. The XRD patterns for the calcined samples show a broad peak around 2θ = 30° which is assigned to the Eu2O3; after treatment with hydrogen at 1073 K no reduction to Eu+2 or Eu0 was observed. The NMR spectra show three peaks, which are assigned to the octahedral, pentahedral and tetrahedral aluminum sites; the intensity of each peak depends on the concentration of europium ions. The Mössbauer spectra of the calcined samples show a single peak near zero velocity which is attributed to the Eu+3; after H2 treatment at 1073 K similar spectra were obtained, suggesting Eu+3 is not reducibly at this temperature.  相似文献   

5.
This paper reports on the afterglow mechanism and thermoluminescence (TL) of a red-emitting CaS:Eu2+,Pr3+ phosphor with incorporated Li+ ion upon irradiation by visible light (D65 lamp). In the TL glow curve of the CaS:Eu2+,Pr3+ phosphor, a TL peak was observed near 120 °C. The luminescence center of the CaS:Eu2+,Pr3+ phosphor was the Eu2+ ion and the trap depth of the CaS:Eu2+,Pr3+ phosphor with the cation vacancy (Trap 1) which formed by incorporation of the Pr3+ ion was 0.202 eV. A cation vacancy (Trap 2) was formed by incorporation of the Li+ ion in the CaS:Eu2+,Pr3+ phosphor. In the TL glow curve of the CaS:Eu2+,Pr3+ phosphor with incorporated Li+ ion, two TL peaks were observed near 120 and 200 °C. The TL luminance of the CaS:Eu2+,Pr3+ phosphor with incorporated Li+ ion increased with an increase in the initial Li/Ca atomic ratio. The two TL peaks moved to the high-temperature side with an increase in heating rate. The cation vacancy (Trap 2) calculated from the Hoogenstraaten method was 0.118 eV. The afterglow time of the CaS:Eu2+,Pr3+ phosphor with incorporated Li+ ion was prolonged by generation of a shallow trap.  相似文献   

6.
This paper reports on the use of ultrafast pulses for photoionisation loading of singly-ionised strontium ions in a linear Paul trap. We take advantage of an autoionising resonance of Sr neutral atoms to form Sr+ by two-photon absorption of femtosecond pulses at a wavelength of 431 nm. We compare this technique to electron-bombardment ionisation and observe several advantages of photoionisation. It actually allows for the loading of a pure Sr+ ion cloud in a low radio-frequency voltage amplitude regime. In these conditions, up to 4×104 laser-cooled Sr+ ions were trapped.  相似文献   

7.

The laser-probing method for lifetime measurements of metastable levels, performed by applying the Fast Ion Beam Laser (FIBLAS) method to ions stored in a storage ring, has been developed by the Stockholm group. Recently, we have applied this method to lifetime measurements of close lying metastable levels. In this paper we discuss experimental studies of ions with complex structure and present the first experimentally obtained lifetimes of selected metastable levels in complex systems as Fe+, Eu+ and La+.

  相似文献   

8.
Ion traps are particular usefully devices for precision spectroscopy on ionic ground states in the microwave domain. Although ultimate precision is achieved only with laser-cooled single ions, in many cases the precision obtained using large uncooled clouds of ions is sufficient for many requirements in atomic physics. The stronger signal in this case makes possible experiments on forbidden transitions or on systems with complex spectra and many substates. Recent examples of laser-microwave double resonance spectra on Pb+ and Eu+ are presented along with attempts to laser-cool a large ion cloud in order to reduce uncertainties from the second-order Doppler effect.  相似文献   

9.
We describe the construction of a novel compact Penning trap from strong permanent magnets for trapping light ions. Our cylindrically symmetric, iron-free magnetic configuration allows fully analytical treatment, is easy to handle and to optimize. The magnetic field inhomogeneity is less than 1% in a volume of 1 cm3 at 0.7 T. The stored H+ and H 2 + ions in this trap are detected electrically by the rf absorption method. The charge density, total number and storage time of the trapped ions are measured.Dedicated to H. Walther on the occasion of his 60th birthday  相似文献   

10.
《Current Applied Physics》2018,18(8):864-868
We investigated the effect of the gamma-ray irradiation on the emission property of the Eu ion doped YVO4. We clearly observed that on exposure to the gamma-ray, sharp emission peaks originating from the Eu3+ ions were suppressed dramatically. Instead, a broad emission feature near 470 nm, which was attributed to the Eu2+ ions, emerged. The quantitative analysis on the emission spectra suggest that the valence state of the Eu ions in our samples was changed from 3 + to 2 + by the gamma-ray irradiation. The conversion of the valence state of the Eu ions was closely related to the formation of the oxygen vacancies induced by the gamma-ray irradiation.  相似文献   

11.
Eu3+ ion doped chlorophosphate glass ceramics containing nanocrystals were successfully prepared, and their spectroscopic characterizations were done using absorption, excitation and emission spectra. For the crystallized samples, X-ray diffraction (XRD) and transmission electron microscopy (TEM) experiments evidenced the formation of CaCl2 nanocrystals. The absorption and emission spectra investigations indicate that a considerable amount of Eu3+ ions was trapped in CaCl2 nanocrystals, and therefore an efficient up- and down-frequency conversion was observed. The comparative spectroscopic studies of Eu3+ doped samples suggest that the investigated glass ceramics systems are potentially applicable as frequency-conversion photonics devices.  相似文献   

12.
We are currently investigating the influence of vibrational effects on the strength of trapping of He+ in solid hydrogen. Such effects can lead to an isotope dependence of the trapping energy associated with the hydrogen molecules and He+ ion. At the present time, our focus is on the isotope effect for 3He+ and 4He+, which we are studying through the vibrational motions of the trapped He+ ions in the potential they experience as they move about their equilibrium positions. The potential governing the vibrations has been obtained from Hartree–Fock cluster calculations of the total energy of the cluster composed of the He+ ion and up to the third nearest neighbor hydrogen molecules as a function of the displacement of the He+ ion from its trapped position. The energy eigenvalues for the ground vibrational states of 3He+ and 4He+ in this potential come out as 1.29 and 0.96 meV, respectively, leading to corresponding reductions by these amounts in the binding energy of 8.6 eV for both ions without vibrational effects. The difference of these reductions can be considered as an isotope shift, its value for this case being 0.33 meV. From the analysis for these results, it is suggested that isotope shift effects for deuteron and triton in solid D–T would have the same order of magnitude. A procedure for more accurate investigations of the isotope shifts is discussed. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

13.
Ba+ ions are trapped in a Paul rf quadrupole trap and irradiated by D1 resonance light at 493.4 nm from a tunable laser. At ion densities of about 105 cm-3 a saturation lamp dip was easily observed when two laser beams of opposite directions were used. This should allow Doppler-free optical spectroscopy on a small number of ions in the future.  相似文献   

14.
A europium doped ZnO (ZnO:Eu) particle was directly synthesized by the spray pyrolysis method. The crystal structure of samples was designated by the europium ion and the synthesis temperature. We identified the coexistence of Eu2+ and Eu3+ ions in the as prepared ZnO, which was strongly influenced by the doping concentration and the synthesis temperature. With addition of a 0.5 mol% concentration of europium ions, only the Eu2+ ion existed in particles, while both Eu2+ and Eu3+ ions existed in sample using 1 mol% or higher concentration of europium ions. Changing the wavelength of the excitation source, we also found that both the blue and red luminescence can be obtained.  相似文献   

15.
In the present article, the role of charge compensator ions (R+?=?Li+, Na+ and K+) in europium-doped strontium aluminate (SrAl2O4:Eu3+) phosphors was synthesized by the high-temperature, solid-state reaction method. The crystal structures of sintered phosphors were in a monoclinic phase with space group P21. The trap parameters which are mainly activation energy (E), frequency factor (s) and order of the kinetics (b) were evaluated by using the peak shape method. The calculated trap depths are in the range from 0.76 to 0.84?eV. Photoluminescence measurements showed that the phosphor exhibited emission peak with good intensity at 595?nm, corresponding to 5D07F1 (514?nm) orange emission and weak 5D07F2 (614?nm) red emission. The excitation spectra monitored at 595?nm show a broad band from 220 to 320?nm ascribed to O–Eu charge-transfer state transition and the other peaks in the range of 350–500?nm originated from f–f transitions of Eu3+ ions. The strongest band at 394?nm can be assigned to 7F05L6 transition of Eu3+ ions due to the typical f–f transitions within Eu3+ of 4f6 configuration. The latter lies in near ultraviolet (350–500?nm) emission of UV LED. CIE color chromaticity diagram and thermoluminescence spectra confirm that the synthesized phosphors would emit an orange-red color. Incorporating R+?=?Li+, Na+ and K+ as the compensator charge, the emission intensity of SrAl2O4:Eu3+ phosphor can be obviously enhanced and the emission intensity of SrAl2O4:Eu3+ doping Li+ is higher than that of Na+ or K+ ions.  相似文献   

16.
In order to clarify whether the mixed valence of Eu2+/Eu3+ exists in a self-compensation mode in Eu-doped BaTiO3, the site occupation and valence state of Eu ions in barium titanate were investigated by X-ray diffraction (XRD), scanning electron microscope (SEM), electron spin resonance (ESR), Raman spectroscopy (RS), and dielectric measurements. The results indicate that Eu ions may enter both Ba- and Ti-sites as Eu3+, forming a self-compensation mode with the amphoteric behavior. Self-compensation characteristics of Eu ions in BaTiO3 are reflected by an expansion in unit cell volume, evolution of the 830 cm− 1 Raman band, strong diffusion of the dielectric peak, disappearance of the Eu2+ ESR broad signal, and a g = 2.004 signal independent of temperature.  相似文献   

17.
A series of Li+ and Eu3+ co-doped double tungstate NaLa(WO4)2 (NLW) red phosphors have been successfully synthesized by an ion exchange method under a hydrothermal condition. The effects of Li+ doping concentration on the crystal structure, morphology and photoluminescence properties were investigated using the XRD, TEM and photoluminescence (PL) measurements. The results reveal that the samples have phase-pure scheelite structure and adopt spherical particle morphology. Furthermore, room temperature PL spectrum shows that the optical brightness is highly dependent on the concentration of doping Li+, which is determined by ion exchange duration and the precursor concentration of LiNO3. As 5% Li+ ions was introduced into the crystal lattice, the emission intensity was enhanced by more than 10-fold as compared with the pristine one. Moreover, the co-doping of Li+ can substantially improve the effective excitation of the NaLa(WO4)2:Eu3+ phosphors under near-UV region.  相似文献   

18.
Tricalcium aluminate doped with Eu3+ was prepared at furnace temperatures as low as 500°C by using the convenient combustion route and examined using powder X-ray diffraction, scanning electron microscope and photoluminescence techniques. A room-temperature photoluminescence study showed that the phosphors can be efficiently excited by UV/Visible region, emitting a red light with a peak wavelength of 616 nm corresponding to the 5D07F2 transition of Eu3+ ions. The phosphor exhibits three thermoluminescence (TL) peaks at 195°C, 325°C and 390°C. Electron Spin Resonance (ESR) studies were carried out to study the defect centres induced in the phosphor by gamma irradiation and also to identify the defect centres responsible for the TL process. Room-temperature ESR spectrum of irradiated phosphor appears to be a superposition of three distinct centres. One of the centres (centre I) with principal g-value 2.0130 is identified as O ion while centre II with an axially symmetric principal values g =2.0030 and g =2.0072 is assigned to an F+ centre (singly ionized oxygen vacancy). O ion (hole centre) correlates with the TL peak at 195°C and the F+ centre (electron centre), which acts as a recombination centre, is also correlated to the 195°C TL peak. F+ centre further appears to be related to the high temperature peak at 390°C. Centre III is also assigned to an F+ centre and seems to be the recombination centre for the TL peak at 325°C.  相似文献   

19.
A novel method of ground-state laser cooling of trapped atoms utilizes the absorption profile of a three- (or multi-) level system that is tailored by a quantum interference. With cooling rates comparable to conventional sideband cooling, lower final temperatures may be achieved. The method was experimentally implemented to cool a single Ca+ ion to its vibrational ground state. Since a broad band of vibrational frequencies can be cooled simultaneously, the technique will be particularly useful for the cooling of larger ion strings, thereby being of great practical importance for initializing a quantum register based on trapped ions. We also discuss its application to different level schemes and for ground-state cooling of neutral atoms trapped by a far-detuned standing wave laser field. Received: 10 July 2001 / Published online: 23 November 2001  相似文献   

20.
An ensemble of trapped C60 + ions has been heated with a continuous CO2 laser to a stationary state where, in time average, the same energy is emitted as absorbed. With 10 W laser power, equilibria have been reached, which correspond to temperatures between 1800 and 2000 K. The ions are confined in a radio frequency quadrupole field created by a set of ring electrodes (split ring electrode trap). The number of stored ions can be determined in two ways, on one side by extracting and counting them with a Daly detector, on the other side via imaging their thermal emission onto an intensified CCD camera. Single photon sensitivity and a spatial resolution of a few μm provide precise information on the geometrical distribution and the total number of the trapped C60 + ions. The spectral distribution of the emitted photons or their total number provides information on the internal energy of the ions. Trapping times of many minutes make it possible to follow very slow thermal loss of C2 from hot C60 + resulting in fragmentation rates between 10?1 and 10?3 s?1. Correlating them to the internal temperature leads to a curved Arrhenius plot. The resulting parameters are smaller than the values derived from nonequilibrium ensembles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号